263 resultados para DIETARY PROTEIN
Resumo:
Background: Schistosomiasis continues to be a significant public health problem. This disease affects 200 million people worldwide and almost 800 million people are at risk of acquiring the infection. Although vaccine development against this disease has experienced more failures than successes, encouraging results have recently been obtained using membrane-spanning protein antigens from the tegument of Schistosoma mansoni. Our group recently identified Sm29, another antigen that is present at the adult worm tegument surface. In this study, we investigated murine cellular immune responses to recombinant (r) Sm29 and tested this protein as a vaccine candidate. Methods and Findings: We first show that Sm29 is located on the surface of adult worms and lung-stage schistosomula through confocal microscopy. Next, immunization of mice with rSm29 engendered 51%, 60% and 50% reduction in adult worm burdens, in intestinal eggs and in liver granuloma counts, respectively (p<0.05). Protective immunity in mice was associated with high titers of specific anti-Sm29 IgG1 and IgG2a and elevated production of IFN-gamma, TNF-alpha and IL-12, a typical Th1 response. Gene expression analysis of worms recovered from rSm29 vaccinated mice relative to worms from control mice revealed a significant (q<0.01) down-regulation of 495 genes and up-regulation of only 22 genes. Among down-regulated genes, many of them encode surface antigens and proteins associated with immune signals, suggesting that under immune attack schistosomes reduce the expression of critical surface proteins. Conclusion: This study demonstrates that Sm29 surface protein is a new vaccine candidate against schistosomiasis and suggests that Sm29 vaccination associated with other protective critical surface antigens is the next logical strategy for improving protection.
Resumo:
A series of organochalcogenanes was synthesized and evaluated as protein tyrosine phosphatases (PTPs) inhibitors. The results indicate that organochalcogenanes inactivate the PTPs in a time- and concentration-dependent fashion, most likely through covalent modification of the active site sulfur-moiety by the chalcogen atom. Consequently, organochalcogenanes represent a new class of mechanism-based probes to modulate the PTP-mediated cellular processes.
Resumo:
A synergic effect of amylose on rheological characteristics of lysozyme physical gels evolved out of dimethylsulfoxide-water was verified and analyzed. The dynamics of the gels were experimentally approached by oscillatory rheology. The synergic effect was characterized by a decrease in the threshold DMSO volume fraction required for lysozyme gelation, and by a significant strengthening of the gel structure at over-critical solvent and protein concentrations. Drastic changes in the relaxation and creep curve patterns for systems in the presence of amylose were verified. Complex viscosity dependence on temperature was found to conform to an Arrhenius-like equation, allowing the determination of an activation energy term (Ea, apparent) for discrimination of gel rigidity. A dilatant effect was found to be induced by temperature on the flow behavior of lysozyme dispersions in DMSO-H(2)O in sub-critical conditions for gelation, which was greatly intensified by the presence of amylose in the samples. That transition was interpreted as reflecting a change from a predominant colloidal flow regime, where globular components are the prevailing structural elements, to a mainly fibrillar, polymeric flow behavior.
Resumo:
Background: Physical protein-protein interaction (PPI) is a critical phenomenon for the function of most proteins in living organisms and a significant fraction of PPIs are the result of domain-domain interactions. Exon shuffling, intron-mediated recombination of exons from existing genes, is known to have been a major mechanism of domain shuffling in metazoans. Thus, we hypothesized that exon shuffling could have a significant influence in shaping the topology of PPI networks. Results: We tested our hypothesis by compiling exon shuffling and PPI data from six eukaryotic species: Homo sapiens, Mus musculus, Drosophila melanogaster, Caenorhabditis elegans, Cryptococcus neoformans and Arabidopsis thaliana. For all four metazoan species, genes enriched in exon shuffling events presented on average higher vertex degree (number of interacting partners) in PPI networks. Furthermore, we verified that a set of protein domains that are simultaneously promiscuous (known to interact to multiple types of other domains), self-interacting (able to interact with another copy of themselves) and abundant in the genomes presents a stronger signal for exon shuffling. Conclusions: Exon shuffling appears to have been a recurrent mechanism for the emergence of new PPIs along metazoan evolution. In metazoan genomes, exon shuffling also promoted the expansion of some protein domains. We speculate that their promiscuous and self-interacting properties may have been decisive for that expansion.
Resumo:
Background: The adaptor protein RACK1 (receptor of activated kinase 1) was originally identified as an anchoring protein for protein kinase C. RACK1 is a 36 kDa protein, and is composed of seven WD repeats which mediate its protein-protein interactions. RACK1 is ubiquitously expressed and has been implicated in diverse cellular processes involving: protein translation regulation, neuropathological processes, cellular stress, and tissue development. Results: In this study we performed a biophysical analysis of human RACK1 with the aim of obtaining low resolution structural information. Small angle X-ray scattering (SAXS) experiments demonstrated that human RACK1 is globular and monomeric in solution and its low resolution structure is strikingly similar to that of an homology model previously calculated by us and to the crystallographic structure of RACK1 isoform A from Arabidopsis thaliana. Both sedimentation velocity and sedimentation equilibrium analytical ultracentrifugation techniques showed that RACK1 is predominantly a monomer of around 37 kDa in solution, but also presents small amounts of oligomeric species. Moreover, hydrodynamic data suggested that RACK1 has a slightly asymmetric shape. The interaction of RACK1 and Ki1/57 was tested by sedimentation equilibrium. The results suggested that the association between RACK1 and Ki-1/57(122-413) follows a stoichiometry of 1:1. The binding constant (KB) observed for RACK1-Ki-1/57(122-413) interaction was of around (1.5 +/- 0.2) x 10(6) M(-1) and resulted in a dissociation constant (KD) of (0.7 +/- 0.1) x 10(-6) M. Moreover, the fluorescence data also suggests that the interaction may occur in a cooperative fashion. Conclusion: Our SAXS and analytical ultracentrifugation experiments indicated that RACK1 is predominantly a monomer in solution. RACK1 and Ki-1/57(122-413) interact strongly under the tested conditions.
Resumo:
Seed phytate and protein content in beans depending on the application of basalt powder. The content of phytate in the grains is correlated with the supply of phosphorus to the plant, but there is a lack of knowledge as to possible effect of slower availability of nutrients in the soil. The objectives of this study were to assess the effect of rock powder, alone or combined with cattle manure, on the productivity, levels of phosphorus, protein and phytate content in beans. The experiment was carried out in a randomized blocks design, with four replications. The treatments were control (limestone, granite and natural phosphate); conventional fertilization; powder basalt (2.5, 5.0, 10.0 and 20.0 ton. ha(-1)); cattle manure, and doses of powder basalt with cattle manure. In the treatment with conventional fertilizer, the total phosphorus content in grain was higher than the control, but the application of powder of basalt did not show a difference significant. Increase in the doses of basalt powder increased the phosphorus content, but phytate content remained constant. Basalt powder proved to be an alternative to maintain low levels of phosphorus in the form of phytate in the grains.
Resumo:
Previous studies show that exercise training and caloric restriction improve cardiac function in obesity. However, the molecular mechanisms underlying this effect on cardiac function remain unknown. Thus, we studied the effect of exercise training and/or caloric restriction on cardiac function and Ca(2+) handling protein expression in obese rats. To accomplish this goal, male rats fed with a high-fat and sucrose diet for 25 weeks were randomly assigned into 4 groups: high-fat and sucrose diet, high-fat and sucrose diet and exercise training, caloric restriction, and exercise training and caloric restriction. An additional lean group was studied. The study was conducted for 10 weeks. Cardiac function was evaluated by echocardiography and Ca(2+) handling protein expression by Western blotting. Our results showed that visceral fat mass, circulating leptin, epinephrine, and norepinephrine levels were higher in rats on the high-fat and sucrose diet compared with the lean rats. Cardiac nitrate levels, reduced/oxidized glutathione, left ventricular fractional shortening, and protein expression of phosphorylated Ser(2808)-ryanodine receptor and Thr(17-)phospholamban were lower in rats on the high-fat and sucrose diet compared with lean rats. Exercise training and/or caloric restriction prevented increases in visceral fat mass, circulating leptin, epinephrine, and norepinephrine levels and prevented reduction in cardiac nitrate levels and reduced: oxidized glutathione ratio. Exercise training and/or caloric restriction prevented reduction in left ventricular fractional shortening and in phosphorylation of the Ser(2808)-ryanodine receptor and Thr(17)-phospholamban. These findings show that exercise training and/or caloric restriction prevent cardiac dysfunction in high-fat and sucrose diet rats, which seems to be attributed to decreased circulating neurohormone levels. In addition, this nonpharmacological paradigm prevents a reduction in the Ser(2808)-ryanodine receptor and Thr(17-)phospholamban phosphorylation and redox status. (Hypertension. 2010;56:629-635.)
Resumo:
Bueno CR Jr, Ferreira JC, Pereira MG, Bacurau AV, Brum PC. Aerobic exercise training improves skeletal muscle function and Ca(2+) handling-related protein expression in sympathetic hyperactivity-induced heart failure. J Appl Physiol 109: 702-709, 2010. First published July 1, 2010; doi: 10.1152/japplphysiol.00281.2010.-The cellular mechanisms of positive effects associated with aerobic exercise training on overall intrinsic skeletal muscle changes in heart failure (HF) remain unclear. We investigated potential Ca(2+) abnormalities in skeletal muscles comprising different fiber compositions and investigated whether aerobic exercise training would improve muscle function in a genetic model of sympathetic hyperactivity-induced HF. A cohort of male 5-mo-old wild-type (WT) and congenic alpha(2A)/alpha(2C) adrenoceptor knockout (ARKO) mice in a C57BL/6J genetic background were randomly assigned into untrained and trained groups. Exercise training consisted of a 8-wk running session of 60 min, 5 days/wk (from 5 to 7 mo of age). After completion of the exercise training protocol, exercise tolerance was determined by graded treadmill exercise test, muscle function test by Rotarod, ambulation and resistance to inclination tests, cardiac function by echocardiography, and Ca(2+) handling-related protein expression by Western blot. alpha(2A)/alpha(2C)ARKO mice displayed decreased ventricular function, exercise intolerance, and muscle weakness paralleled by decreased expression of sarcoplasmic Ca(2+) release-related proteins [alpha(1)-, alpha(2)-, and beta(1)-subunits of dihydropyridine receptor (DHPR) and ryanodine receptor (RyR)] and Ca(2+) reuptake-related proteins [sarco(endo) plasmic reticulum Ca(2+)-ATPase (SERCA) 1/2 and Na(+)/Ca(2+) exchanger (NCX)] in soleus and plantaris. Aerobic exercise training significantly improved exercise tolerance and muscle function and reestablished the expression of proteins involved in sarcoplasmic Ca(2+) handling toward WT levels. We provide evidence that Ca(2+) handling-related protein expression is decreased in this HF model and that exercise training improves skeletal muscle function associated with changes in the net balance of skeletal muscle Ca(2+) handling proteins.
Resumo:
This work investigates the formation of self-assembled monolayers (SAMs) of cystamine and cystamine-glutaraldehyde on a screen-printed electrode, and the immobilization of the Tc85 protein (from Trypanosoma cruzi) on these monolayers. The methods used included infrared techniques, cyclic voltammetry, and electrochemical impedance spectroscopy. The electrochemical studies were performed at pH 6.9 in 0.1 mol L(-1) phosphate buffer solution containing Fe(CN)(6)(-3/-4) redox species. The surface coverage (0) of the electrode was 0.10 (cystamine), 0.35 (cystamine-glutaraldehyde) and 0.84 (Tc85). Interpretation of electrochemical impedance spectroscopy results was based on a charge-transfer reaction involving Fe(CN)(6)(-3/-4) species at high frequencies, followed by a diffusion through the monolayers at lower frequencies. Estimates of the electrode surface coverage, active site radius, and distance between two adjacent sites assumed that charge transfer occurred at the active sites, and that there was a planar diffusion of redox species to these sites. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The aim objective of this project was to evaluate the protein extraction of soybean flour in dairy whey, by the multivariate statistical method with 2(3) experiments. Influence of three variables were considered: temperature, pH and percentage of sodium chloride against the process specific variable ( percentage of protein extraction). It was observed that, during the protein extraction against time and temperature, the treatments at 80 degrees C for 2h presented great values of total protein (5.99%). The increasing for the percentage of protein extraction was major according to the heating time. Therefore, the maximum point from the function that represents the protein extraction was analysed by factorial experiment 2(3). By the results, it was noted that all the variables were important to extraction. After the statistical analyses, was observed that the parameters as pH, temperature, and percentage of sodium chloride, did not sufficient for the extraction process, since did not possible to obtain the inflection point from mathematical function, however, by the other hand, the mathematical model was significant, as well as, predictive.
Resumo:
Aqueous extract of mate (dried leaves of Ilex paraguariensis) added to drinking water for broilers for the last 14 days prior to slaughter did not affect performance at 25 days of age, but improved oxidative stability of the chicken meat. Oxidative stability of precooked breast meat made from control meat (CON) and from meat of broilers raised on water with mate added was investigated during chill storage for up to 7 days. The use of mate showed no influence on the content of lipids in chicken breast meat; however, lipid oxidation measured as thiobarbituric acid-reactive substances (TBARS) was significantly lower for meat from broilers raised on water with mate extracts in different concentrations (MA0.1, MA0.5, and MA1.0 corresponding to 0.1, 0.5, and 1.0% of mate dried leaves). The relative effect was largest at 1 day of storage with more than 50% reduction on TBARS; the result was still significant after 3 days, but almost vanished after 7 days, when oxidative rancidity was very high in all samples. In meat from broilers raised on water with mate extract, vitamin E was protected during cooking, although in the very rancid meat balls at 7 days of storage, the protection almost disappeared. Nevertheless, mate can be an interesting natural alternative to be used in chicken diets to improve lipid stability of the meat.
Resumo:
This study was aimed to evaluate the penetration behaviour of different brines with tumbled beef steaks from the biceps femoris muscle, specifically their interactions with pH and effects on yield. Six muscles from different animals, divided into origin (OP) and insertion (IP) portions, were cut into 60 steaks of 2.5 cm thickness and tumbled for 30 or 60 min. The steaks were tumbled with two brines, with (WTB/HSP) or without (WTB) hydrolysed soy protein (HSP), and steaks that were not tumbled with brine or water were used as controls. Brine penetration was verified by measuring the amount of dye-containing brine (absorbance at 627 nm) recovered from homogenates of four thin (2 mm) slices from the surface of the beef steaks after tumbling. The WTB/HSP steaks exhibited greater (P < 0.05) brine penetration when tumbled for 60 min than for 30 min. The OP steaks showed greater yield and lower pH (P < 0.05) than IP steaks. HSP-added brine increased the water absorption and retention in the first slices of the steaks, and its efficiency was increased with a longer tumbling time. The portion of the biceps femoris muscle used influenced brine absorption and retention, impacting meat yield. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
An important topic in genomic sequence analysis is the identification of protein coding regions. In this context, several coding DNA model-independent methods based on the occurrence of specific patterns of nucleotides at coding regions have been proposed. Nonetheless, these methods have not been completely suitable due to their dependence on an empirically predefined window length required for a local analysis of a DNA region. We introduce a method based on a modified Gabor-wavelet transform (MGWT) for the identification of protein coding regions. This novel transform is tuned to analyze periodic signal components and presents the advantage of being independent of the window length. We compared the performance of the MGWT with other methods by using eukaryote data sets. The results show that MGWT outperforms all assessed model-independent methods with respect to identification accuracy. These results indicate that the source of at least part of the identification errors produced by the previous methods is the fixed working scale. The new method not only avoids this source of errors but also makes a tool available for detailed exploration of the nucleotide occurrence.
Resumo:
Diseases outbreaks are a major concern in intensive fish farming because fish are exposed to stressors which may negatively affect their physiology. This study set out to determine effects of dietary levamisole (Levamisole HCl; SIGMA (R)) on performance and hematology of pacu, Piaractus mesopotamicus, juveniles. Fish (55.94 g) were stocked into 24 plastic aquaria (500 L; 15 fish per aquarium) and fed for 30 d with a commercial diet with 0, 50, 100, 200, 400, and 800 mg/kg levamisole, and for an extra 15 d, with a control diet in a totally randomized design trial (n = 4). Biometrical and hematological data were collected. No significant differences in growth parameters were recorded for either control or supplemented diets. Hematological parameters, such as hemoglobin, plasma glucose, white blood count (WBC), and differential leukocyte count were influenced (P < 0.05) levamisole. WBC, lymphocytes, neutrophils, monocytes, eosinophils, and special granulocytic cell numbers decreased significantly after 15 d. Dietary levamisole at 100 mg/kg diet for 15 d increased leukocyte production in juvenile pacu. However, levamisole administration for more than 15 d presented toxicity to lymphopoietic tissues. Information about long-period administration, mode of action in weight gain, effects on hematology of levamisole in freshwater fish nutrition are scarce and necessary for its safe use in aquaculture.
Resumo:
Information on nutritional requirement of some Brazilian farmed fish species, especially essential amino acids (EAA) requirements, is scarce. The estimation of amino acids requirements based on amino acid composition of fish is a fast and reliable alternative. Matrinxa, Brycon amazonicus, and curimbata, Prochilodus lineatus, are two important Brazilian fish with potential for aquaculture. The objective of the present study was to estimate amino acid requirements of these species and analyze similarities among amino acid composition of different fish species by cluster analysis. To estimate amino acid requirement, the following formula was used: amino acid requirement = [(amount of an individual amino acid in fish muscle tissue) x (average totalEAA requirement among channel catfish, Ictalurus punctatus, Nile tilapia, Oreochromis niloticus, and common carp, Cyprinus carpio)]/(average fish muscle totalEAA). Most values found lie within the range of requirements determined for other omnivorous fish species, in exception of leucine requirement estimated for both species, and arginine requirement estimated for matrinxa alone. Rather than writing off the need for regular dose-response assays under the ideal protein concept to determine EAA requirements of curimbata and matrinxa, results set solid base for the study of tropical species dietary amino acids requirements.