107 resultados para Airborne imaging spectrometry
Resumo:
Our purpose was to study the determinants of coronary and carotid subclinical atherosclerosis, aortic stiffness and their relation with inflammatory biomarkers in familial hypercholesterolemia (FH) subjects. Furthermore, we evaluated the agreement degree of imaging and inflammatory markers` severity used for coronary heart disease (CHD) prediction. Coronary calcium scores (CCS), carotid intima media thickness (IMT), carotid-femoral pulse wave velocity (PWV), C reactive protein (CRP) and white blood cells count (WBC) were determined in 89 FH patients (39 +/- 14 years, mean LDL-C=279 mg/dl) and in 31 normal subjects (NL). The following values were considered as imaging and biomarkers` severity: CCS > 75th% for age and sex, IMT > 900 mu m, PWV > 12 m/s, and CRP > 3 mg/l. Coronary artery calcification (CAC) prevalence and severity, IMT, PWV and WBC values were higher in FH than in NL (all parameters, p < 0.05). After multivariate analysis, the following variables were considered independent determinants of (1) IMT: systolic blood pressure, 10-year CHD risk by Framingham risk scores (FRS) and apolipoprotein B (r(2)=0.33); (2) PWV: age (r(2)=0.35); (3) CAC as a continuous variable: male gender and LDL-cholesterol year score (LYS) (r(2)=0.32); (4) presence of CAC as dichotomous variable: FRS (p=0.0027) and LYS (p=0.0228). With the exception of a moderate agreement degree between IMT and PWV severity (kappa=0.5) all other markers had only a slight agreement level (kappa < 0.1). In conclusion, clinical parameters poorly explained IMT, CAC and PWV variability in FH subjects. Furthermore, imaging markers and inflammatory biomarkers presented a poor agreement degree of their severity for CHD prediction. (C) 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Neutrophilic granulocytes play a major role in the initiation and resolution of the inflammatory response, and demonstrate significant transcriptional and translational activity. Although much was known about neutrophils prior to the introduction of proteomics, the use of MS-based methodologies has provided an unprecedented tool to confirm and extend previous findings. In the present study, we performed a Gel-LC-MS/MS analysis of neutrophil detergent insoluble and whole cell lysate fractions of resting neutrophils. We achieved a set of identifications through the use of high-resolution mass spectrometry and validation of its data. We identified a total of 1249 proteins with a wide range of intensities from both detergent-insoluble and whole cell lysate fractions, allowing a mapping of proteins such as those involved in intracellular transport (Rab and Sec family proteins) and cell signaling (S100 proteins). These results represent the most comprehensive proteomic characterization of resting human neutrophils to date, and provide important information relevant for further studies of the immune system in health and disease. The methods applied here can be employed to help us understand how neutrophils respond to various physiologic and pathophysiologic conditions and could be extended to protein quantitation after cell activation.
Resumo:
Purpose: The purpose of our study was to compare signal characteristics and image qualities of MR imaging at 3.0 T and 1.5 T in patients with diffuse parenchymal liver disease. Materials and methods: 25 consecutive patients with diffuse parenchymal liver disease underwent abdominal MR imaging at both 3.0 T and 1.5 T within a 6-month interval. A retrospective study was conducted to obtain quantitative and qualitative data from both 3.0 T and 1.5 T MRI. Quantitative image analysis was performed by measuring the signal-to-noise ratios (SNRs) and the contrast-to-noise ratios (CNRs) by the Students t-test. Qualitative image analysis was assessed by grading each sequence on a 3- and 4-point scale, regarding the presence of artifacts and image quality, respectively. Statistical analysis consisted of the Wilcoxon signed-rank test. Results: the mean SNRs and CNRs of the liver parenchyma and the portal vein were significantly higher at 3.0 T than at 1.5 T on portal and equilibrium phases of volumetric interpolated breath-hold examination (VIBE) images (P < 0.05). The mean SNRs were significantly higher at 3.0 T than at 1.5 T on T1-weighted spoiled gradient echo (SGE) images (P < 0.05). However, there were no significantly differences on T2-weighted short-inversion-time inversion recovery (STIR) images. Overall image qualities of the 1.5 T noncontrast T1- and T2-weighted sequences were significantly better than 3.0 T (P < 0.01). In contrast, overall image quality of the 3.0 T post-gadolinium VIBE sequence was significantly better than 1.5 T (P< 0.01). Conclusions: MR imaging of post-gadolinium VIBE sequence at 3.0 T has quantitative and qualitative advantages of evaluating for diffuse parenchymal liver disease. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Mexiletine (MEX), hydroxymethylmexiletine (HMM) and P-hydroxy-mexiletine (PHM) were analyzed in rat plasma by LC-MS/MS. The plasma samples were prepared by liquid-liquid extraction using methyl-tert-butyl ether as extracting solvent. MEX, HMM, and PHM enantiomers were resolved on a Chiralpak (R) AD column. Validation of the method showed a relative standard deviation (precision) and relative errors (accuracy) of less than 15% for all analytes studied. Quantification limits were 0.5 ng ml(-1) for the MEX and 0.2 ng ml(-1) for the HMM and PHM enantiomers. The validated method was successfully applied to quantify the enantiomers of MEX and its metabolites in plasma samples of rats (n = 6) treated with a single oral dose of racemic MEX. Chirality 21:648-656, 2009. (C) 2008 Wiley-Liss, Inc.
Resumo:
Purpose: To evaluate the diagnostic image quality of post-gadolinium water excitation-magnetization-prepared rapid gradient-echo (WE-MPRAGE) sequence in abdominal examinations of noncooperative patients at 1.5 Tesla (T) and 3.0T MRI. Materials and Methods: Eighty-nine consecutive patients (48 males and 41 females; mean age +/- standard deviation, 54.6 +/- 16.6 years) who had MRI examinations including postgadolinium WE-MPRAGE were included in the study. Of 89 patients, 33 underwent noncooperative protocol at 1.5T. 10 under-went noncooperative protocol at 3.0T, and 46 underwent cooperative protocol at 3.0T. Postgadolinium WE-MPRAGE, MPRAGE, and three-dimensional gradient-echo sequences of these three different groups were qualitatively evaluated for image quality, extent of artifacts, lesion conspicuity, and homogeneity of fat-attenuation by two reviewers retrospectively, independently, and blindly. The results were compared using Wilcoxon signed rank and Mann-Whitney U tests. Kappa statistics were used to measure the extent of agreement between the reviewers. Results: The average scores indicated that the images were diagnostic for WE-MPRAGE at 1.5T and 3.0T in noncooperative patients. WE-MPRAGE achieved homogenous fat-attenuation in 31/33 (94%) of noncooperative patients at 1.5T and 10/10 (100%) of noncooperative patients at 3.0T. WE-MPRAGE at 3.0T had better results for image quality, extent of artifacts, lesion conspicuity and homogeneity of fat-attenuation compared with WE-MPRAGE at 1.5T. in noncooperative patients (P = 0.0008, 0.0006, 0.0024, and 0.0042: respectively). Kappa statistics varied between 0.76 and 1.00, representing good to excellent agreement. Conclusion: WE-MPRAGE may be used as a T1-weighted postgadolinium fat-attenuated sequence in noncooperative patients, particularly at 3.0T MRI.
Resumo:
Kallmann syndrome (KS), characterized by the association of hypogonadotropic hypogonadism and anosmia, may present many other phenotypic abnormalities, including neurologic features as involuntary movements, called mirror movements (MM). MM etiology probably involves a complex mechanism comprising corticospinal tract abnormal development associated with deficient contralateral motor cortex inhibitory system. In this study, in order to address previous hypotheses concerning MM etiology, we identified and quantified white matter (WM) alterations in 21 KS patients, comparing subjects with and without MM and 16 control subjects, using magnetization transfer ratio (MTR) and T2 relaxometry (R2). Magnetization transfer and 12 double-echo images were acquired in a 1.5 T system. MTR and R2 were calculated pixel by pixel to initially create individual maps, and then, group average maps, co-registered with MNI305 stereotaxic coordinate system. After analysis of selected regions of interest, we demonstrated areas with higher 12 relaxation time and lower MTR values in KS patients, with and without MM, differently involving corticospinal tract projection, frontal lobes and corpus callosum. Higher MTR was observed only in pyramidal decussation when compared in both groups of patients with controls. In conclusion, we demonstrated that patients with KS have altered WM areas, presenting in a different manner in patients with and without MM. These data suggest axonal loss or disorganization involving abnormal pyramidal tracts and other associative/connective areas, relating to the presence or absence of MM. We also found a different pattern of alteration in pyramidal decussation, which can represent the primary area of neuronal disarrangement. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Osteoarthritis (OA) is the most frequent form of arthritis, with major implications for individual and public health care without effective treatment available. The field of joint imaging, and particularly magnetic resonance (MR) imaging, has evolved rapidly owing to technical advances and the application of these to the field of clinical research. Cartilage imaging certainly is at the forefront of these developments. In this review, the different aspects of OA imaging and cartilage assessment, with an emphasis on recent advances, will be presented. The current role of radiography, including advances in the technology for joint space width assessment, will be discussed. The development of various MR imaging techniques capable of facilitating assessment of cartilage morphology and the methods for evaluating the biochemical composition of cartilage will be presented. Advances in quantitative morphologic cartilage assessment and semiquantitative whole-organ assessment will be reviewed. Although MR imaging is the most important modality in imaging of OA and cartilage, others such as ultrasonography play a complementary role that will be discussed briefly.
Resumo:
Knee osteoarthritis (OA) has to be considered a whole joint disease. Magnetic resonance imaging (MRI) allows superior assessment of all joint tissues that may be involved in OA, such as the subchondral bone, synovium, ligaments, and periarticular soft tissues. Reliable MRI-based scoring systems are available to assess and quantify these structures and associated pathology. Cross-sectional and longitudinal evaluation has enabled practitioners to understand their relevance in explaining pain and structural progression.
Resumo:
Semiquantitative assessment of the knee by expert magnetic resonance imaging readers is a powerful research tool for understanding the natural history of osteoarthritis (OA). Several reliable semiquantitative scoring systems have been applied to large observational cross-sectional and longitudinal epidemiologic studies and interventional clinical trials. Such evaluations have enabled understanding of the relevance of disease in structures within the knee joint to explain pain and progression of OA. Compositional imaging of cartilage has added to our ability to detect early degeneration before morphologic changes are present, which may help to prevent the permanent morphologic changes commonly seen in knee OA.
Resumo:
Osteoarthritis (OA) is a widely prevalent disease of the whole joint including cartilage, bone and soft tissues. Increasing importance of imaging including assessment of all joint structures has been recognized recently. Conventional radiography is still the first and most commonly used imaging technique for evaluation of a patient with a known or suspected diagnosis of OA. However, limitations have been revealed by recent MRI-based knee OA studies. MRI plays a crucial role in understanding the natural history of the disease and in guiding future therapies due to its ability to image the knee as a whole organ and to directly and three-dimensionally assess cartilage morphology and composition. It is crucial to use the appropriate MR pulse sequences to assess various OA features, and thus support from experienced musculoskeletal radiologists should be sought for study design, image acquisition and interpretation. The aim of this article is to describe the roles and limitations of conventional radiography and MRI in imaging of OA, and also to give insight into the use of other modalities such as ultrasound, scintigraphy, computed tomography (CT) and CT arthrography in clinical practice and research in OA, particularly focusing on the assessment of knee OA in the tibiofemoral joint.
Resumo:
Magnetic resonance (MR) imaging is the most important imaging modality for the evaluation of traumatic or degenerative cartilaginous lesions in the knee. It is a powerful noninvasive tool for detecting such lesions and monitoring the effects of pharmacologic and surgical therapy. The specific MR imaging techniques used for these purposes can be divided into two broad categories according to their usefulness for morphologic or compositional evaluation. To assess the structure of knee cartilage, standard spin-echo (SE) and gradient-recalled echo (GRE) sequences, fast SE sequences, and three-dimensional SE and GRE sequences are available. These techniques allow the detection of morphologic defects in the articular cartilage of the knee and are commonly used in research for semiquantitative and quantitative assessments of cartilage. To evaluate the collagen network and proteoglycan content in the knee cartilage matrix, compositional assessment techniques such as T2 mapping, delayed gadolinium-enhanced MR imaging of cartilage (or dGEMRIC), T1 rho imaging, sodium imaging, and diffusion-weighted imaging are available. These techniques may be used in various combinations and at various magnetic field strengths in clinical and research settings to improve the characterization of changes in cartilage. (C)RSNA, 2011 , radiographics.rsna.org
Resumo:
Hypertension afflicts 25% of the general population and over 50% of the elderly. In the present work, arterial spin labeling MRI was used to non-invasively quantify regional cerebral blood flow (CBE), cerebrovascular resistance and CO(2) reactivity in spontaneously hypertensive rats (SHR) and in normotensive Wistar Kyoto rats (WKY), at two different ages (3 months and 10 months) and under the effects of two anesthetics, alpha-chloralose and 2% isoflurane (1.5 MAC). Repeated CBE measurements were highly consistent, differing by less than 10% and 18% within and across animals, respectively. Under alpha-chloralose, whole brain CBE at normocapnia did not differ between groups (young WKY: 61 3 ml/100 g/min; adult WKY: 62 +/- 4 ml/100 g/min; young SHR: 70 +/- 9 ml/100 g/min: adult SHR: 69 8 ml/100 g/min), indicating normal cerebral autoregulation in SHR. At hypercapnia, CBE values increased significantly, and a linear relationship between CBE and PaCO(2) levels was observed. In contrast, 2% isoflurane impaired cerebral autoregulation. Whole brain CBE in SHR was significantly higher than in WKY rats at normocapnia (young SHR: 139 +/- 25 ml/100 g/min; adult SHR: 104 +/- 23 ml/100 g/min; young WKY: 55 +/- 9 ml/100 g/min; adult WKY: 71 +/- 19 ml/100 g/min). CBE values increased significantly with increasing CO(2): however, there was a clear saturation of CBF at PaCO(2) levels greater than 70 mm Hg in both young and adult rats, regardless of absolute CBE values, suggesting that isoflurane interferes with the vasoclilatory mechanisms of CO(2). This behavior was observed for both cortical and subcortical structures. Under either anesthetic, CO(2) reactivity values in adult SHR were decreased, confirming that hypertension, when combined with age, increases cerebrovascular resistance and reduces cerebrovascular compliance. Published by Elsevier Inc.
Resumo:
Purpose: To assess the association of prevalent bone marrow edema-like lesions (BMLs) and full-thickness cartilage loss with incident subchondral cyst-like lesions (SCs) in the knee to evaluate the bone contusion versus synovial fluid intrusion theories of SC formation. Materials and Methods: The Multicenter Osteoarthritis study is a longitudinal study of individuals who have or are at risk for knee osteoarthritis. The HIPAA-compliant protocol was approved by the institutional review boards of all participating centers, and written informed consent was obtained from all participants. Magnetic resonance images were acquired at baseline and 30-month follow-up and read semiquantitatively by using the Whole-Organ Magnetic Resonance Imaging Score system. The tibiofemoral and patellofemoral joints were subdivided into 14 subregions. BMLs and SCs were scored from 0 to 3. Cartilage morphology was scored from 0 to 6. The association of prevalent BMLs and full-thickness cartilage loss with incident SCs in the same subregion was assessed by using logistic regression with mutual adjustment for both predictors. Results: A total of 1283 knees were included. After adjustment for full-thickness cartilage loss, prevalent BMLs showed a strong and significant association with incident SCs in the same subregion, with an odds ratio of 12.9 (95% confidence interval [CI]: 8.9, 18.6). After adjustment for BMLs, prevalent full-thickness cartilage loss showed a significant but much less important association with incident SCs in the same subregion (odds ratio, 1.4; 95% CI: 1.0, 2.0). There was no apparent relationship between severity of full-thickness cartilage loss at baseline and incident SCs. Conclusion: Prevalent BMLs strongly predict incident SCs in the same subregion, even after adjustment for full-thickness cartilage loss, which supports the bone contusion theory of SC formation. (C) RSNA, 2010
Resumo:
An analyzer-based X-ray phase-contrast imaging (ABI) setup has been mounted at the Brazilian Synchrotron Light Laboratory (LNLS) for multiple imaging radiography (MIR) purposes. The algorithm employed for treating the MIR data collected at LNLS is described, and its reliability in extracting the distinct types of contrast that can be obtained with MIR is demonstrated by analyzing a test sample (thin polyamide wire). As a practical application, the possibility of studying ophthalmic tissues, corneal sequestra in this case, via MIR is investigated. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Subclinical mastitis is a common and easily disseminated disease in dairy herds. Its routine diagnosis via bacterial culture and biochemical identification is a difficult and time-consuming process. In this work, we show that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) allows bacterial identification with high confidence and speed (1 d for bacterial growth and analysis). With the use of MALDI-TOF MS, 33 bacterial culture isolates from milk of different dairy cows from several farms were analyzed, and the results were compared with those obtained by classical biochemical methods. This proof-of-concept case demonstrates the reliability of MALDI-TOF MS bacterial identification, and its increased selectivity as illustrated by the additional identification of coagulase-negative Staphylococcus species and mixed bacterial cultures. Matrix-assisted laser desorption-ionization mass spectrometry considerably accelerates the diagnosis of mastitis pathogens, especially in cases of subclinical mastitis. More immediate and efficient animal management strategies for mastitis and milk quality control in the dairy industry can therefore be applied.