210 resultados para API X-70
Resumo:
This paper describes the preparation of a Pt-Rh alloy surface electrodeposited on Pt electrodes and its electrocatalytic characterization for methanol oxidation. The X-ray photoelectronic spectroscopy ( XPS) results demonstrate that the surface composition is approximately 24 at-% Rh and 76 % Pt. The cyclic voltammetry (CV) and electrochemical quartz crystal (EQCN) results for the alloy were associated, for platinum, to the well known profile in acidic medium. For Rh, on the alloy, the generation of rhodium hydroxide species (Rh(OH)(3) and RhO(OH)(3)) was measured. During the successive oxidation-reduction cycles the mass returns to its original value, indicating the reversibility of the processes. It was not observed rhodium dissolution during the cycling. The 76/24 at % Pt-Rh alloy presented singular electrocatalytic activity for methanol electrooxidation, which started at more negative potentials compared to pure Pt (70 mV). During the sweep towards more negative potentials, there is only weak CO re-adsorption on both Rh and Pt-Rh alloy surfaces, which can be explained by considering the interaction energy between Rh and CO.
Resumo:
Black carbon (BC) may play ail important role in the global C budget, due to its potential to act as a significant sink of atmospheric CO(2). In order to fully evaluate the influence of BC oil the global C cycle, in understanding of the stability of BC is required. The biochemical stability of BC was assessed in a chronosequence of high-BC-containing Anthrosols from the central Amazon, Brazil, using a range of spectroscopic and biological methods. Results revealed that the Anthrosols had 61-80% lower (P < 0.05) CO(2) evolution per unit C over 532 days compared to their respective adjacent soils with low BC contents. No significant (P > 0.05) difference in CO(2) respiration per unit C was observed between Anthrosols with contrasting ages of BC (600-8700 years BP) Lind soil textures (0.3-36% clay). Similarly, the molecular composition of the core regions of micrometer-sized BC particles quantified by synchrotron-based Near-Edge X-ray Fine Structure (NEXAFS) spectroscopy coupled to Scanning Transmission X-ray Microscopy (STXM) remained similar regardless of their ages and closely resembled the spectral characteristics or fresh BC. BC decomposed extremely slowly to ail extent that it was not possible to detect chemical changes between Youngest and oldest samples, as also confirmed by X-ray Photoelectron Spectroscopy (XPS). Deconvolution of NEXAFS spectra revealed greater oxidation oil the surfaces of BC particles with little penetration into the core of the particles. The similar C mineralization between different BC-rich soils regardless of soil texture underpins the importance of chemical recalcitrance for the stability of BC, in contrast to adjacent soils which showed the highest mineralization in the sandiest soil. However, the BC-rich Anthrosols had higher proportions (72-90%) of C in the more stable organo-mineral fraction than BC-poor adjacent soils (2-70%), Suggesting some degree of physical stabilization. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
A method for simultaneous determination of Cr, Fe, Co, Ni, Cu, Zn, As e Pb in liquid chemical waste using Energy Dispersive X-Ray Fluorescence (EDXRF) technique was evaluated. A small sample amount (200 mu L) was dried on a 6.35 mu m thickness Mylar film at 60 degrees C and the analyses were carried out using an EDXRF spectrometer operated with an X-ray Mo tube (Zr filter) at 30 kV/20 mA. The acquisition time was 300 s and the Ga element was utilized as internal standard at 25 mg/L for quantitative analysis. The method trueness was assessed by spiking and the detection limit for those elements ranged from 0.39 to 1.7 mg/L. This method is notable because it assists the choice of the more appropriated waste treatment procedure, in which inter elemental interference is a matter of importance. In addition, this inexpensive method allows a non-destructive determination of the elements from (19)K to (92)U simultaneously.
Resumo:
In this work, quaternary conformational studies of peanut agglutinin (PNA) have been carried out using small-angle X-ray scattering (SAXS). PNA was submitted to three different conditions: pH variation (2.5, 4.0, 7.4 and 9.0), guanidine hydrochloride presence (0.5-2 M) at each pH value, and temperature ranging from 25 to 60 degrees C. All experiments were performed in the absence and presence of T-antigen to evaluate its influence on the lectin stability. At room temperature and pH 4.0,7.4 and 9.0, the SAXS curves are consistent with the PNA scattering in its crystallographic native homotetrameric structure, with monomers in a jelly roll fold, associated by non-covalent bonds resulting in an open structure. At pH 2.5, the results indicate that PNA tends to dissociate into smaller sub-units, as dimers and monomers, followed by a self-assembling into larger aggregates. Furthermore, the conformational stability under thermal denaturation follows the pH sequence 7.4 > 9.0 > 4.0 > 2.5. Such results are consistent with the conformational behavior found upon GndHCl influence. The presence of T-antigen does not affect the protein quaternary structure in all studied systems within the SAXS resolution. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
center dot Dynamic resistance exercise promotes a sizeable increase in blood pressure during its execution in non medicated hypertensives. WHAT THIS STUDY ADDS center dot Atenolol not only decreases blood pressure level but also mitigates the increase of blood pressure during dynamic resistance exercise in hypertensive patients. An increase in blood pressure during resistance exercise might be at least in part attributed to an increase in cardiac output. AIMS This study was conducted to determine whether atenolol was able to decrease BP level and mitigate BP increase during dynamic resistance exercise performed at three different intensities in hypertensives. METHODS Ten essential hypertensives (systolic/diastolic BP between 140/90 and 160/105 mmHg) were blindly studied after 6 weeks of placebo and atenolol. In each phase, volunteers executed, in a random order, three protocols of knee-extension exercises to fatigue: (i) one set at 100% of 1 RM; (ii) three sets at 80% of 1 RM; and (iii) three sets at 40% of 1 RM. Intra-arterial radial blood pressure was measured throughout the protocols. RESULTS Atenolol decreased systolic BP maximum values achieved during the three exercise protocols (100% = 186 +/- 4 vs. 215 +/- 7, 80% = 224 +/- 7 vs. 247 +/- 9 and 40% = 223 +/- 7 vs. 252 +/- 16 mmHg, P < 0.05). Atenolol also mitigated an increase in systolic BP in the first set of exercises (100% = +38 +/- 5 vs. +54 +/- 9; 80% = +68 +/- 11 vs. +84 +/- 13 and 40% = +69 +/- 7 vs. +84 +/- 14, mmHg, P < 0.05). Atenolol decreased diastolic BP values and mitigated its increase during exercise performed at 100% of 1 RM (126 +/- 6 vs. 145 +/- 6 and +41 +/- 6 vs. +52 +/- 6, mmHg, P < 0.05), but not at the other exercise intensities. CONCLUSIONS Atenolol was effective in both reducing systolic BP maximum values and mitigating BP increase during resistance exercise performed at different intensities in hypertensive subjects.
Resumo:
It has been previously reported that carbohydrate (CHO) mouth rinse can improve exercise performance. The proposed mechanism involves increased activation of brain regions believed to be responsible for reward/motivation and motor control. Since strength-related performance is affected by central drive to the muscles, it seems reasonable to hypothesize that the positive CNS response to oral CHO sensing may counteract the inhibitory input from the muscle afferent pathways minimizing the drop in the central drive. The purpose of the current study was to test if CHO mouth rinse affects maximum strength and strength endurance performance. Twelve recreationally strength-trained healthy males (age 24.08 +/- 2.99 years; height 178.09 +/- 6.70 cm; weight 78.67 +/- 8.17 kg) took part in the study. All of the tests were performed in the morning, after an 8 h overnight fasting. Subjects were submitted to a maximum strength test (1-RM) and a strength endurance test (six sets until failure at 70% of 1-RM), in separate days under three different experimental conditions (CHO mouth rinse, placebo-PLA mouth rinse and control-CON) in a randomized crossover design. The CHO mouth rinse (25 ml) occurred before every attempt in the 1-RM test, and before every set in the endurance strength test. Blood glucose and lactate were measured immediately before and 5 min post-tests. There were no significant differences in 1-RM between experimental conditions (CHO 101 +/- 7.2 kg; PLA 101 +/- 7.4 kg; CON 101 +/- 7.2 kg; p = 0.98). Furthermore, there were no significance between trial differences in the number of repetitions performed in each set (p = 0.99) or the total exercise volume (number of repetitions x load lifted [kg]) (p = 0.98). A main effect for time (p < 0.0001) in blood lactate concentration was observed in both tests (1-RM and strength endurance). Blood glucose concentration did not differ between conditions. In conclusion, CHO mouth rinse does not affect maximum strength or strength endurance performance.
Resumo:
The thermal expansion anisotropy of the V(5)Si(3) and T(2)-phase of the V-Si-B system were determined by high-temperature X-ray diffraction from 298 to 1273 K. Alloys with nominal compositions V(62.5)Si(37.5) (V5Si3 phase) and V(63)Si(12)B(25) (T(2)-phase) were prepared from high-purity materials through arc-melting followed by heat-treatment at 1873 K by 24 h, under argon atmosphere. The V(5)Si(3) phase exhibits thermal expansion anisotropy equals to 1.3, with thermal expansion coefficients along the a and c-axis equal to 9.3 x 10(-6) K(-1) and 11.7 x 10(-6) K(-1), respectively. Similarly, the thermal expansion anisotropy value of the T(2)-phase is 0.9 with thermal expansion coefficients equal to 8.8 x 10(-6) K(-1) and 8.3 x 10(-6) K(-1) along the, a and c-axis respectively. Compared to other isostructural silicides of the 5:3 type and the Ti(5)Si(3) phase, the V(5)Si(3) phase presents lower thermal expansion anisotropy. The T(2)-phase present in the V-Si-B system exhibits low thermal expansion anisotropy, as the T(2)-phase of the Mo-Si-B, Nb-Si-B and W-Si-B systems. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
To analyse the sensitivity and specificity of clinical indicators of ineffective airway clearance in children with congenital heart disease and to identify the indicators that have high predictive power. The precise establishment of nursing diagnoses has been found to be one of the factors contributing to higher quality of care and cost reduction in healthcare institutions. The use of indicators to diagnose ineffective airway clearance could improve care of children with congenital heart disease. Longitudinal study. Participants consisted of 45 children, <= 1 year of age, with congenital heart disease, who had not had definitive or palliative surgical correction. Six assessments were made at 2-day intervals. Each clinical indicator was defined based on previously established operational criteria. Sensitivity, specificity and positive and negative predictive values of each indicator were calculated based on a model for the longitudinal data. A nursing diagnosis of ineffective airway clearance was made in 31% of patients on the first assessment, rising to 71% on the last assessment, for a 40% increase. Sensitivity was highest for Changes in Respiratory Rates/Rhythms (0.99), followed by Adventitious Breath Sounds (0.97), Sputum Production (0.85) and Restlessness (0.53). Specificity was higher for Sputum Production (0.92), followed by Restlessness (0.73), Adventitious Breath Sounds (0.70) and Changes in Respiratory Rates/Rhythms (0.17). The best positive predictive values occurred for Sputum Production (0.93) and Adventitious Breath Sounds (0.80). Adventitious Breath Sounds followed by Sputum Production were the indicators that had the best overall sensitivity and specificity as well as the highest positive predictive values. The use of simple indicators in nursing diagnoses can improve identification of ineffective airway clearance in children with congenital heart disease, thus leading to early treatment of the problem and better care for these children.
Resumo:
The S phase, known as expanded austenite, is formed on the surfaces of austenitic stainless steels that are nitrided under low temperature plasma. A similar phase was observed for nitrided ferritic stainless steels and was designed as expanded ferrite or ferritic S phase. The authors treated samples of austenitic AISI 304L and AISI 316L and ferritic AISI 409 stainless steels by plasma nitriding at different temperatures and then studied the structural, morphological, chemical and corrosion characteristics of the modified layers by X-ray diffraction, scanning electron microscopy/energy dispersive spectroscopy and electrochemical tests. For both austenitic AISI 304L and AISI 316L stainless steels, the results showed that a hard S phase layer was formed on the surfaces, promoting an anodic polarisation curve displacement to higher current density values that depend on the plasma nitriding temperature. A layer having a high amount of nitrogen was formed on the ferritic AISI 409 stainless steel. X-ray diffraction measurements indicated high strain states for the modified layers formed on the three stainless steels, being more pronounced for the ferritic S phase.
Resumo:
Oxy-coal combustion is a viable technology, for new and existing coal-fired power plants, as it facilitates carbon capture and, thereby, can mitigate climate change. Pulverized coals of various ranks, biomass, and their blends were burned to assess the evolution of combustion effluent gases, such as NO(x), SO(2), and CO, under a variety of background gas compositions. The fuels were burned in an electrically heated laboratory drop-tube furnace in O(2)/N(2) and O(2)/CO(2) environments with oxygen mole fractions of 20%, 40%, 60%, 80%, and 100%, at a furnace temperature of 1400 K. The fuel mass flow rate was kept constant in most cases, and combustion was fuel-lean. Results showed that in the case of four coals studied, NO(x) emissions in O(2)/CO(2) environments were lower than those in O(2)/N(2) environments by amounts that ranged from 19 to 43% at the same oxygen concentration. In the case of bagasse and coal/bagasse blends, the corresponding NO(x) reductions ranged from 22 to 39%. NO(x) emissions were found to increase with increasing oxygen mole fraction until similar to 50% O(2) was reached; thereafter, they monotonically decreased with increasing oxygen concentration. NO(x) emissions from the various fuels burned did not clearly reflect their nitrogen content (0.2-1.4%), except when large content differences were present. SO(2) emissions from all fuels remained largely unaffected by the replacement of the N(2) diluent gas with CO(2), whereas they typically increased with increasing sulfur content of the fuels (0.07-1.4%) and decreased with increasing calcium content of the fuels (0.28-2.7%). Under the conditions of this work, 20-50% of the fuel-nitrogen was converted to NO(x). The amount of fuel-sulfur converted to SO(2) varied widely, depending on the fuel and, in the case of the bituminous coal, also depending on the O(2) mole fraction. Blending the sub-bituminous coal with bagasse reduced its SO(2) yields, whereas blending the bituminous coal with bagasse reduced both its SO(2) and NO(x) yields. CO emissions were generally very low in all cases. The emission trends were interpreted on the basis of separate combustion observations.
Resumo:
The objective of this work was to select indigenous vegetal species for restoration programs aiming at the regeneration of ombrophilous dense forest. Thirty-five spoil piles located in the county of Sideropolis, Santa Catarina, that received overburden disposal for 39 years (1950-1989) were selected for study because they exhibited remarkable spontaneous regrowth of trees compared to surrounding spoil piles. Floristic inventory covered the whole area of the 35 piles, whereas survey on phytosociology and natural regeneration studies were conducted in 70 plots distributed along the 35 piles. Floristic inventory recorded 83 species from 28 botanical families. Herbaceous terricolous plants constituted the predominant species (47.0%), followed by shrubs (26.5%), trees (19.3%), and vines (7.2%). Results from surveys on phytosociology and natural regeneration, focused on shrubs and trees, recorded incipient ecological succession. In addition, the most adapted species recorded on the overburden piles, as ranked by index of natural regeneration (RNT) plus importance value index (IVI), were as follows: Clethra scabra (RNT = 23.93%; IVI = 17.28%), Myrsine coriacea (RNT = 20.93%, IVI = 11.26%), Eupatorium intermedium (RNT 7.56%, IVI 0.40%), Miconia ligustroides (RNT 5.84%, IVI 2.37%), Ossaea amygdaloides (RNT 3.84%, IVI 1.30%), Tibouchina sellowiana (RNT 3.29%, M 1.94%), Eup. inulaefolium (RNT = 2.65%, IVI = 0.80%), and Baccharis dracunculifolia (RNT = 2.28%; IVI = 0.56%). High values of IVI and RNT exhibited by the exotic species Eucalyptus saligna (IVI = 21.73%, RNT = 51.41%) indicated strong competition between exotic and indigenous species. Severe chemical (acidic pH and lack of nutrients) and physical (coarse substrate and slope angle of 40-50 degrees) characteristics displayed by the overburden piles constituted limitations to floristic diversity and size of indigenous trees, indicating the need for substrate reclamation prior to forest restoration.
Resumo:
Amorphous SiC(x)N(y) films have been deposited on (100) Si substrates by RF magnetron sputtering of a SiC target in a variable nitrogen-argon atmosphere. The as-deposited films were submitted to thermal anneling in a furnace under argon atmosphere at 1000 degrees C for 1 hour. Composition and structure of unannealed and annealed samples were investigated by RBS and FTIR. To study the electrical characteristics of SiC(x)N(y) films, Metal-insulator-semiconductor (MIS) structures were fabricated. Elastic modulus and hardness of the films were determined by nanoindentation. The results of these studies showed that nitrogen content and thermal annealing affect the electrical, mechanical and structural properties of SiC(x)N(y) films.
Resumo:
Freeze-drying of biological tissues allows for dry storage and gamma ray sterilization, which may improve their use as a medical prosthesis. The objective of this study was to evaluate the rehydration characteristics and hydrodynamic performance of prosthetic valves before and after lyophilization. Two size 23 bovine pericardium aortic valve prostheses from different manufacturers were evaluated in a Shelhigh (Union, NJ, USA) pulse duplicator (80 ppm, 5 L/min) before and after lyophilization. Flow and transvalvular pressure gradient were registered in vitro and in vivo, and images of opening and closing of the prosthesis were obtained in the pulse duplicator in a digital camera. Rehydration was evaluated by comparison of dry valve weight with valve weight after 15 min, and 1, 24, 48, and 72 h in saline solution, inside the pulse duplicator. In vivo performance was assessed by surgical implantation in Santa Ines young male sheep in the pulmonary position after 30 min rehydration with 0.9% saline. Transvalvular pressure gradient and flow measurements were obtained immediately after implantation and 3 months after surgery when valves were explanted. Captured images showed a change in the profile opening and closing of valve prosthesis after lyophilization. The gradient measured (in vitro) in two valves was 17.08 +/- 0.57 and 18.76 +/- 0.70 mm Hg before lyophilization, and 34.24 +/- 0.59 and 30.40 +/- 0.97 mm Hg after lyophilization. Rehydration of both lyophilized valves was approximately 82%. Drying changed the profile of the opening and closing of valve prostheses, and increased on average by 83% the gradient in vitro tests. The result of the in vivo tests suggests maintaining pressure levels of the animal with the lyophilized prostheses within acceptable levels.
Resumo:
The aim of this paper is to present an economical design of an X chart for a short-run production. The process mean starts equal to mu(0) (in-control, State I) and in a random time it shifts to mu(1) > mu(0) (out-of-control, State II). The monitoring procedure consists of inspecting a single item at every m produced ones. If the measurement of the quality characteristic does not meet the control limits, the process is stopped, adjusted, and additional (r - 1) items are inspected retrospectively. The probabilistic model was developed considering only shifts in the process mean. A direct search technique is applied to find the optimum parameters which minimizes the expected cost function. Numerical examples illustrate the proposed procedure. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This work aimed to determining the anatomical structure of wood, through methodology of histology and X-ray densitometry, of resin-tapped and not resin-tapped Pinus caribaea var. hondurensis trees samples, of three diameter classes. Pine trees, in forest plantation established in 1969, in the Ecological Experimental Station of Itirapina, from the Forestry Institute of Sao Paulo State, were measured and stratified into three classes of trunk diameter. The pine trees were resin-tapped since 2004, with the opening of two simultaneous and opposing panels. Sixty samples of pine wood trees were extracted from the tree trunk through a non-destructive method and in the laboratory. Tree rings were determined in the laboratory and wood apparent density by X-ray densitometry. The test results showed that: (i) false tree rings occur in the early wood and late wood of the tree rings due to climate change; (ii) the X-ray densitometry allowed the demarcation of the tree rings limits; (iii) the wood apparent density average was significantly different between the trees in high class diameter and in the medium-low class; (iv) the wood characteristics from the resin-tapped and non resin-tapped faces did not show significant differences.