109 resultados para temperature-based models
Resumo:
Starting from the Durbin algorithm in polynomial space with an inner product defined by the signal autocorrelation matrix, an isometric transformation is defined that maps this vector space into another one where the Levinson algorithm is performed. Alternatively, for iterative algorithms such as discrete all-pole (DAP), an efficient implementation of a Gohberg-Semencul (GS) relation is developed for the inversion of the autocorrelation matrix which considers its centrosymmetry. In the solution of the autocorrelation equations, the Levinson algorithm is found to be less complex operationally than the procedures based on GS inversion for up to a minimum of five iterations at various linear prediction (LP) orders.
Resumo:
Susceptible-infective-removed (SIR) models are commonly used for representing the spread of contagious diseases. A SIR model can be described in terms of a probabilistic cellular automaton (PCA), where each individual (corresponding to a cell of the PCA lattice) is connected to others by a random network favoring local contacts. Here, this framework is employed for investigating the consequences of applying vaccine against the propagation of a contagious infection, by considering vaccination as a game, in the sense of game theory. In this game, the players are the government and the susceptible newborns. In order to maximize their own payoffs, the government attempts to reduce the costs for combating the epidemic, and the newborns may be vaccinated only when infective individuals are found in their neighborhoods and/or the government promotes an immunization program. As a consequence of these strategies supported by cost-benefit analysis and perceived risk, numerical simulations show that the disease is not fully eliminated and the government implements quasi-periodic vaccination campaigns. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
This letter addresses the optimization and complexity reduction of switch-reconfigured antennas. A new optimization technique based on graph models is investigated. This technique is used to minimize the redundancy in a reconfigurable antenna structure and reduce its complexity. A graph modeling rule for switch-reconfigured antennas is proposed, and examples are presented.
Resumo:
Eight different models to represent the effect of friction in control valves are presented: four models based on physical principles and four empirical ones. The physical models, both static and dynamic, have the same structure. The models are implemented in Simulink/Matlab (R) and compared, using different friction coefficients and input signals. Three of the models were able to reproduce the stick-slip phenomenon and passed all the tests, which were applied following ISA standards. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Recently, the development of industrial processes brought on the outbreak of technologically complex systems. This development generated the necessity of research relative to the mathematical techniques that have the capacity to deal with project complexities and validation. Fuzzy models have been receiving particular attention in the area of nonlinear systems identification and analysis due to it is capacity to approximate nonlinear behavior and deal with uncertainty. A fuzzy rule-based model suitable for the approximation of many systems and functions is the Takagi-Sugeno (TS) fuzzy model. IS fuzzy models are nonlinear systems described by a set of if then rules which gives local linear representations of an underlying system. Such models can approximate a wide class of nonlinear systems. In this paper a performance analysis of a system based on IS fuzzy inference system for the calibration of electronic compass devices is considered. The contribution of the evaluated IS fuzzy inference system is to reduce the error obtained in data acquisition from a digital electronic compass. For the reliable operation of the TS fuzzy inference system, adequate error measurements must be taken. The error noise must be filtered before the application of the IS fuzzy inference system. The proposed method demonstrated an effectiveness of 57% at reducing the total error based on considered tests. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Indium tin oxide (ITO) thin films have been deposited on (100) Si substrates by RF magnetron sputtering from a compact target (90% In(2)O(3)-10% SnO(2) in weight) with 6 in. in diameter. In order to perform electromechanical characterizations of these films, strain gauges were fabricated. An experimental set-up based on bending beam theory was developed to determine the longitudinal piezoresistive coefficient (pi(1)) of the strain gauges fabricated. It has been confirmed that electrical resistance of the strain gauges decreases with load increases which results a negative gauge factor. A model based on the activation energy was used to explain the origin of this negative signal. The influence of the temperature on piezoresistive properties of ITO films was also evaluated.
Resumo:
Mixed models have become important in analyzing the results of experiments, particularly those that require more complicated models (e.g., those that involve longitudinal data). This article describes a method for deriving the terms in a mixed model. Our approach extends an earlier method by Brien and Bailey to explicitly identify terms for which autocorrelation and smooth trend arising from longitudinal observations need to be incorporated in the model. At the same time we retain the principle that the model used should include, at least, all the terms that are justified by the randomization. This is done by dividing the factors into sets, called tiers, based on the randomization and determining the crossing and nesting relationships between factors. The method is applied to formulate mixed models for a wide range of examples. We also describe the mixed model analysis of data from a three-phase experiment to investigate the effect of time of refinement on Eucalyptus pulp from four different sources. Cubic smoothing splines are used to describe differences in the trend over time and unstructured covariance matrices between times are found to be necessary.
Resumo:
This paper proposes a regression model considering the modified Weibull distribution. This distribution can be used to model bathtub-shaped failure rate functions. Assuming censored data, we consider maximum likelihood and Jackknife estimators for the parameters of the model. We derive the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and we also present some ways to perform global influence. Besides, for different parameter settings, sample sizes and censoring percentages, various simulations are performed and the empirical distribution of the modified deviance residual is displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be straightforwardly extended for a martingale-type residual in log-modified Weibull regression models with censored data. Finally, we analyze a real data set under log-modified Weibull regression models. A diagnostic analysis and a model checking based on the modified deviance residual are performed to select appropriate models. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
The zero-inflated negative binomial model is used to account for overdispersion detected in data that are initially analyzed under the zero-Inflated Poisson model A frequentist analysis a jackknife estimator and a non-parametric bootstrap for parameter estimation of zero-inflated negative binomial regression models are considered In addition an EM-type algorithm is developed for performing maximum likelihood estimation Then the appropriate matrices for assessing local influence on the parameter estimates under different perturbation schemes and some ways to perform global influence analysis are derived In order to study departures from the error assumption as well as the presence of outliers residual analysis based on the standardized Pearson residuals is discussed The relevance of the approach is illustrated with a real data set where It is shown that zero-inflated negative binomial regression models seems to fit the data better than the Poisson counterpart (C) 2010 Elsevier B V All rights reserved
Resumo:
In this study, regression models are evaluated for grouped survival data when the effect of censoring time is considered in the model and the regression structure is modeled through four link functions. The methodology for grouped survival data is based on life tables, and the times are grouped in k intervals so that ties are eliminated. Thus, the data modeling is performed by considering the discrete models of lifetime regression. The model parameters are estimated by using the maximum likelihood and jackknife methods. To detect influential observations in the proposed models, diagnostic measures based on case deletion, which are denominated global influence, and influence measures based on small perturbations in the data or in the model, referred to as local influence, are used. In addition to those measures, the local influence and the total influential estimate are also employed. Various simulation studies are performed and compared to the performance of the four link functions of the regression models for grouped survival data for different parameter settings, sample sizes and numbers of intervals. Finally, a data set is analyzed by using the proposed regression models. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In recent years, maize has become one of the main alternative crops for the autumn winter growing season in the central-western and southeastern regions of Brazil. However, water deficits, sub-optimal temperatures and low solar radiation levels are common problems that are experienced during this growing season by local farmers. One methodology to assess the impact of variable weather conditions on crop production is the use of crop simulation models. The goal of this study was to evaluate the effect of climate variability on maize yield for a subtropical region of Brazil. Specific objectives for this study were (1) to analyse the effect of El Nino Southern Oscillation (ENSO) on precipitation and air temperature for four locations in the state of Sao Paulo and (2) to analyse the impact of ENSO on maize grown off-season for the same four locations using a crop simulation model. For each site, historical weather data were categorised as belonging to one of three phases of ENSO: El Nino (warm sea surface temperature anomalies in the Pacific), La Nina (cool sea surface temperature anomalies) or neutral, based on an index derived from observed sea surface temperature anomalies. During El Nino, there is a tendency for an increase in the rainfall amount during May for the four selected locations, and also during April, mainly in three of the locations, resulting in an increase in simulated maize yield planted between February 15 and March 15. In general, there was a decrease in the simulated yield for maize grown off-season during neutral years. This study showed how a crop model can be used to assess the impact of climate variability on the yield of maize grown off-season in a subtropical region of Brazil. The outcomes of this study can be very useful for both policy makers and local farmers for agricultural planning and decision making. Copyright (C) 2009 Royal Meteorological Society
Resumo:
Grass reference evapotranspiration (ETo) is an important agrometeorological parameter for climatological and hydrological studies, as well as for irrigation planning and management. There are several methods to estimate ETo, but their performance in different environments is diverse, since all of them have some empirical background. The FAO Penman-Monteith (FAD PM) method has been considered as a universal standard to estimate ETo for more than a decade. This method considers many parameters related to the evapotranspiration process: net radiation (Rn), air temperature (7), vapor pressure deficit (Delta e), and wind speed (U); and has presented very good results when compared to data from lysimeters Populated with short grass or alfalfa. In some conditions, the use of the FAO PM method is restricted by the lack of input variables. In these cases, when data are missing, the option is to calculate ETo by the FAD PM method using estimated input variables, as recommended by FAD Irrigation and Drainage Paper 56. Based on that, the objective of this study was to evaluate the performance of the FAO PM method to estimate ETo when Rn, Delta e, and U data are missing, in Southern Ontario, Canada. Other alternative methods were also tested for the region: Priestley-Taylor, Hargreaves, and Thornthwaite. Data from 12 locations across Southern Ontario, Canada, were used to compare ETo estimated by the FAD PM method with a complete data set and with missing data. The alternative ETo equations were also tested and calibrated for each location. When relative humidity (RH) and U data were missing, the FAD PM method was still a very good option for estimating ETo for Southern Ontario, with RMSE smaller than 0.53 mm day(-1). For these cases, U data were replaced by the normal values for the region and Delta e was estimated from temperature data. The Priestley-Taylor method was also a good option for estimating ETo when U and Delta e data were missing, mainly when calibrated locally (RMSE = 0.40 mm day(-1)). When Rn was missing, the FAD PM method was not good enough for estimating ETo, with RMSE increasing to 0.79 mm day(-1). When only T data were available, adjusted Hargreaves and modified Thornthwaite methods were better options to estimate ETo than the FAO) PM method, since RMSEs from these methods, respectively 0.79 and 0.83 mm day(-1), were significantly smaller than that obtained by FAO PM (RMSE = 1.12 mm day(-1). (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Causal inference methods - mainly path analysis and structural equation modeling - offer plant physiologists information about cause-and-effect relationships among plant traits. Recently, an unusual approach to causal inference through stepwise variable selection has been proposed and used in various works on plant physiology. The approach should not be considered correct from a biological point of view. Here, it is explained why stepwise variable selection should not be used for causal inference, and shown what strange conclusions can be drawn based upon the former analysis when one aims to interpret cause-and-effect relationships among plant traits.
Resumo:
Red currants (Ribes rubrum L.), black currants (Ribes nigrum L.), red and green gooseberries (Ribes uva-crispa) were evaluated for the total phenolics, antioxidant capacity based on 2, 2-diphenyl-1-picrylhydrazyl radical scavenging assay and functionality such as in vitro inhibition of alpha-amylase, alpha-glucosidase and angiotensin I-converting enzyme (ACE) relevant for potential management of hyperglycemia and hypertension. The total phenolics content ranged from 3.2 (green gooseberries) to 13.5 (black currants) mg/g fruit fresh weight. No correlation was found between total phenolics and antioxidant activity. The major phenolic compounds were quercetin derivatives (black currants and green gooseberries) and chlorogenic acid (red currants and red gooseberries). Red currants had the highest alpha-glucosidase, alpha-amylase and ACE inhibitory activities. Therefore red currants could be good dietary sources with potential antidiabetes and antihypertension functionality to compliment overall dietary management of early stages of type 2 diabetes.
Resumo:
Samples of 11 different brands of commercially available soy-based beverages (n = 65), including products made from soy protein isolate (SPI) and soy milk, mixed with fruit juice and/or flavoring, were analyzed for their isoflavone content and in vitro antioxidant activity. There was a large variation in isoflavone and total phenolics contents ranging from 0.7 to 13 mg of isoflavones/200 mL and from 6 to 155 mg equivalents of catechin/200 mL, respectively. The antioxidant activity also varied significantly among products. Storage of the beverages at room temperature caused a significant decrease of antioxidant capacity, soluble phenolics, and isoflavone contents after 9 months. When soybeans used for beverage production were stored for up to 6 months in silos, the resulting products were not affected. However, a decrease of malonyl and a proportional increase of free glucosidic forms of isoflavones were observed after storage of both the raw material and the beverages.