129 resultados para phosphate buffer capacity
Resumo:
It is well established, the importance of the measurement of soil suction for the assessment of mechanical and hydraulic behavior of unsaturated soils. Among the methods to obtain the soil suction, the tensiometer is one of the most convenient and reliable. However conventional tensiometer has a limitation related to the maximum suction it is capable of measure. This limitation was overcome by Ridley and Burland (1993), with the development of a high capacity tensiometer, which is capable of measure suction well above 100 kPa. The equipment has a quick response time, allowing the determination of suction in minutes. This paper presents a study about the factors that affect the equilibrium time for high capacity tensiometers in the laboratory. Soil specimens were prepared at three different conditions, creating different soil structures. In addition to that an investigation about the characteristic of the interface that is required between the soil sample and the porous ceramic of the tensiometer was carried out; showing the role of the paste on the technique. The results also suggested that it is possible to infer the hydraulic conductivity function using the equilibrium curve obtained during the measurement of the soil suction using the high capacity tensiometer.
Resumo:
The aim of the present work is to elucidate the influence of lubricants on the friction behavior of zinc phosphated coatings and provide an explanation for the results in terms of physical-chemical interactions between lubricant and phosphate. The friction behavior was studied through a sliding wear test, with a conventional ball-on-disc configuration. Discs, made of AISI 1006 low carbon steel. uncoated and coated with zinc phosphate, were tested against bearing steel balls. A stearate sodium soap, paraffinic oil and both soap and oil were used as lubricants. The sodium stearate soap was found to have the best seizure resistance. The nature of the interfacial forces between the lubricant and surface has an important role in determining the friction behavior. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
All textile uses of cellulose acetate involve acetone recovery, which, because of safety issues, results in large installations, in order to work with dilute streams. This compromises the efficiency of all of the involved unit operations, in this case, acetone absorption in cold water, acetone distillation, and water chilling, making them more expensive. The present article proposes the improvement of the absorption of acetone in water, traditionally performed with sieve trays, by using structured packing instead. The advantageous implementation was enabled through the utilization of a calculation methodology based on concepts of thermodynamic equilibrium of the binary acetone/water system and empirical relations that allow the evaluation of the hydrodynamics of the proposed modification.
Resumo:
This study evaluates the possibility of replacing the hexavalent chromium passivation treatment used as a sealer after phosphating of carbon steel (SAE 1010) by a treatment with niobium ammonium oxalate (Ox). Samples of carbon steel (SAE 1010) after being phosphated in a zinc phosphate bath (PZn + Ni) were immersed in solution of niobium ammonium oxalate (250 mg L(-1) of Nb) either at pH 3.0 or pH 8.0. A passivation treatment with a solution with CrO(3) (200 mg L(-1) of Cr(6+)) was also used for reference. The corrosion resistance of the phosphated samples after passivation treatments was analyzed in a NaCl 0.5 mol L(-1) solution using electrochemical impedance spectroscopy (EIS) and anodic polarization curves. Salt spray tests were also performed to evaluate their corrosion resistance. The results showed that the highest corrosion resistance was obtained by passivation in a solution with (250 mg L(-1) of Nb) at pH 8.0. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The present study was carried out on six different ore types from the Salitre Alkaline Complex aiming to determine their mineralogical composition and the major features that are relevant in the mineral processing. The P(2)O(5) grades vary from 9 to 25%. The slime content (-0, 020 mm) varies between 20 and 34% (w/w) and carries 17-22% of the P(2)O(5) content. The samples essentially consist of apatite, iron oxi-hydroxides, ilmenite, clay minerals, carbonate, quartz, pyroxene, perovskite, secondary phosphates and other minor accessory minerals. Below 0.21 mm, apatite essentially occurs in free particles showing a clean surface or a weak coating of it-on oxi-hydroxides; the highly covered apatite (not recoverable by flotation) varies from 6 to 9%. In the deslimed fraction (above 0.020 mm) more than 97% of the total phosphor content occurs as apatite; the estimated P 2 0 5 potential recovery in flotation concentration is over 90% (71-76% overall recovery).
Resumo:
In this work the performance of graded-channel (CC) SOI MOSFETs operating as source-follower buffers is presented. The experimental analysis is performed by comparing the gain and linearity of buffers implemented with CC and standard SOI MOS devices considering the same mask dimensions. It is shown that by using CC devices, buffer gain very close to the theoretical limit can be achieved, with improved linearity, while for standard devices the gain departs from the theoretical value depending on the inversion level imposed by the bias current and input voltage. Two-dimensional numerical simulations were performed in order to confirm some hypotheses proposed to explain the gain behavior observed in the experimental data. By using numerical simulations the channel length has been varied, showing that the gain of buffers implemented with CC devices remains close to the theoretical limit even when short-channel devices are adopted. It has also been shown that the length of a source-follower buffer using CC devices can be reduced by a factor of 5, in comparison with a standard Sol MOSFET, without gain loss or linearity degradation. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
There is concern that the use of lower quality phosphate rock can result in elevated amounts of Fe-Al-P water-insoluble compounds in fertilizers and, consequently, low agronomic effectiveness. Therefore, studies were conducted to evaluate the effect of some of these compounds on plant growth. Four commercial superphosphates varying in chemical composition (two single and two triple superphosphates) were selected for the study. Fertilizer impurities were collected as water-insoluble residues by washing each P source with deionized water. A modal analysis, based primarily on elemental chemical analysis and x-ray diffractometry, was used to estimate the chemical composition of each P source. Water-soluble monocalcium phosphate (MCP) and the water-leached fertilizer residues were prepared to give a range of fertilizers in terms of water-soluble phosphorus (WSP) (0-100% of the available P as MCP). The water-leached fractions, MCP, and the mixtures of MCP with water-leached fractions were applied to supply 40 mg available P kg(1) to a thermic Rhodic Kanhapludult with pH values of 5.2 +/- 0.05 (unlimed) and 6.4 +/- 0.08 (limed). Wheat (Triticum aestivum L.) grown in a greenhouse for 101 d served as the test crop. The requirement for WSP was source and pH dependent. At a soil pH of 5.2, the fertilizers required 73 to 95% WSP to reach the maximum dry-matter yield, while they required 60 to 86% WSP at pH 6.4. To reach 90% of the maximum yield, all superphosphate fertilizers required <50% WSP. These results show that it is not always necessary to have high water solubility as required by legislation in many countries.
Resumo:
Highly weathered soils represent about 3 billion ha of the tropical region. Oxisols represent about 60% of the Brazilian territory (more than 5 million km 2), in areas of great agricultural importance. Soil organic carbon (SOC) can be responsible for more than 80% of the cation exchange capacity (CEC) of highly weathered soils, such as Oxisols and Ultisols. The objective of this study was to estimate the contribution of the SOC to the CEC of Brazilian soils from different orders. Surface samples (0.0 to 0.2 m) of 30 uncultivated soils (13 Oxisols, 6 Ultisols, 5 Alfisols, 3 Entisols, I Histosol, 1 Inceptisol. and I Molisol), under native forests and from reforestation sites from Sao Paulo State, Brazil, were collected in order to obtain a large variation of (electro)chemical, physical, and mineralogical soil attributes. Total content of SOC was quantified by titulometric and colorimetric methods. Effective cation exchange capacity (ECEC) was obtained by two methods: the indirect method-summation-estimated the ECECi from the sum of basic cations (Ca+ Mg+ K+ Na) and exchangeable Al; and the direct ECECd obtained by the compulsive exchange method, using unbuffered BaCl2 solution. The contribution of SOC to the soil CEC was estimated by the Bennema statistical method. The amount of SOC var ied from 6.6 g kg(-1) to 213.4 g kg(-1). while clay contents varied from 40 g kg(-1) to 716 g kg(-1). Soil organic carbon contents were strongly associated to the clay contents, suggesting that clay content was the primary variable in controling the variability of SOC contents in the samples. Cation exchange capacity varied from 7.0 mmol(c) kg(-1) to 137.8 mmol(c) kg(-1) and had a positive Correlation with SOC. The mean contribution (per grain) of the SOC (1.64 mmol(c)) for the soil CEC was more than 44 times higher than the contribution of the clay fraction (0.04 mmol(c),). A regression model that considered the SOC content as the only significant variable explained 60% of the variation in the soil total CEC. The importance of SOC was related to soil pedogenetic process, since its contribution to the soil CEC was more evident in Oxisols with predominance of Fe and Al (oxihydr)oxides in the mineral fraction or in Ultisols, that presented illuviated clay. The influence of SOC in the sign and in the magnitude of the net charge of soils reinforce the importance of agricultural management systems that preserve high levels of SOC, in order to improve their sustainability.
Resumo:
Samples of 11 different brands of commercially available soy-based beverages (n = 65), including products made from soy protein isolate (SPI) and soy milk, mixed with fruit juice and/or flavoring, were analyzed for their isoflavone content and in vitro antioxidant activity. There was a large variation in isoflavone and total phenolics contents ranging from 0.7 to 13 mg of isoflavones/200 mL and from 6 to 155 mg equivalents of catechin/200 mL, respectively. The antioxidant activity also varied significantly among products. Storage of the beverages at room temperature caused a significant decrease of antioxidant capacity, soluble phenolics, and isoflavone contents after 9 months. When soybeans used for beverage production were stored for up to 6 months in silos, the resulting products were not affected. However, a decrease of malonyl and a proportional increase of free glucosidic forms of isoflavones were observed after storage of both the raw material and the beverages.
Resumo:
Several epidemiological and research studies suggest that a high intake of foods rich in natural antioxidants increases the antioxidant capacity of the plasma and reduces the risk of some kinds of cancers, heart diseases, and stroke. These health benefits are attributed to a variety of constituents, including vitamins, minerals, fiber, and numerous phytochemicals, such as flavonoids. Thus, in addition to measuring the composition of the usual macronutrients and micronutrients, it seems important to also measure the antioxidant capacity of foods. For this purpose, 28 foods including fruits, vegetables and commercially-frozen fruit pulps were analyzed for antioxidant capacity. The antioxidant capacity of the foods varied from 0.73 to 19.8 mu mol BHT equiv/g. The highest values were observed for wild mulberries (19.8 mu mol BHT equiv/g), acai fruit pulp (18.2 mu mol BHT equiv/g) and watercress (9.6 mu mol BHT equiv/g). The antioxidant capacities are only indicative of the potential of the bioactive compounds; however, these data are important to explore and understand the role of fruit, vegetables and other foods in health promotion. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Seed coats, cotyledons and hypocotyls from six Peruvian (Lupinus mutabilis Sweet) and two Brazilian (Lupinus albus and Lupinus angustifolius) lupin cultivars were assessed regarding their content of isoflavones and antioxidant capacity. Genistein and a genistein derivative were detected in seed coats and cotyledons from Peruvian cultivars. Total isoflavones ranged from 9.8 to 87, 16.1 to 30.8 and 1.3 to 6.1 mg/100 g of sample in fresh weight (expressed as genistein) in seed coat, cotyledon and hypocotyl fractions, respectively, from mutabilis species, whereas no isoflavones were detected in L. angustifolius and L. albus. A significant correlation (r = 0.99) was found between the total isoflavone levels and the antioxidant capacity measured by the 2,2-diphenyl-1-picrylhydrazyl radical-scavenging method in all fractions of Peruvian samples. No condensed tannins were detected in any of the lupin cultivars. The H-6 Andean cultivar is promising for its high isoflavone content and antioxidant capacity. Insights from this study indicate that lupin cultivars of the mutabilis species have similar isoflavone profiles and that isoflavones are more concentrated in the cotyledon seed fraction than in the seed coat or hypocotyl fractions. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The effects of different cooking conditions such as soaking, atmospheric (100 degrees C) or pressure boiling (121 degrees C), and draining of cooking water following thermal treatment on phenolic compounds and the DPPH radical scavenging capacity from two selected Brazilian bean cultivars (black and yellow-brown seed coat color) were investigated using a factorial design (2(3)). Factors that significantly reduced the total phenolic contents and antioxidant capacity in both cultivars were the soaking and draining stage. Independent of cooking temperature, total phenolics and antioxidant capacities were enhanced in treatments without soaking and where cooking water was not discarded, and this was likely linked to an increase of specific phenolic compounds detected by high performance liquid chromatography such as flavonols and free phenolic acids in both cultivars. Cooking of beans either at 100 or 121 degrees C, without a soaking stage and keeping the cooking water, would be recommendable for retaining antioxidant phenolic compounds.
Resumo:
The antioxidant capacity of the striped sunflower seed cotyledon extracts, obtained by sequential extraction with different polarities of solvents, was evaluated by three different in vitro methods: ferric reducing/antioxidant power (FRAP), 2.2-diphenyl-1-picrylhydrazyl radical (DPPH) and oxygen radical absorbance capacity (ORAC) assays. In the three methods, the aqueous extract at 30 mu g/ml showed a higher antioxidant capacity value (FRAP, 45.27 mu mol; DPPH, 50.18%; ORAC, 1.5 Trolox equivalents) than the ethanolic extract (FRAP, 32.17 mu mol; DPPH, 15.21%; ORAC, 0.50 Trolox equivalents). When compared with the synthetic antioxidant butylated hydroxyl toluene, the antioxidant capacity of the aqueous extract varied from 45% to 66%, according to the used method. The high antioxidant capacity observed for the aqueous extract of the studied sunflower seed suggests that the intake of this seed may prevent in vivo oxidative reactions responsible for the development of several diseases, such as cancer.
Resumo:
Samples of fruit from the jussara palm plant (Euterpe edulis), collected in different regions of the state of Santa Catarina. Brazil, were analyzed for chemical composition. phenolic acids. anthocyanins, flavonoids and fatty acids profile. Results indicated that the jussara fruit has a high lipid content (18.45-44.08%), oleic acid (44.17-55.61%) and linoleic acid (18.19-25.36%) are the fatty acids found in the highest proportion, and other components were proteins (5.13-8.21%). ash (1.55-3.32%) and moisture (34.95-42.47%). Significant differences were found in the total phenolic, total monomeric anthocyanins and other flavonoids for the samples from the five cultivation regions. The fruit from region E harvested in summer, with high temperatures and medium altitudes, had the highest contents of total phenolics (2610.86 +/- 3.89 mg 100 g(-1) GAE) and monomeric anthocyanins (1080.54 +/- 2.33 mg 100g(-1) cy-3-glu). The phenolic compound included ferulic, gallic, hydroxybenzoic and p-coumaric acids, as well as catechin, epicatechin and quercetin. The results show promising perspectives for the exploitation of this tropical fruit with a chemical composition comprising considerable phenolic acids and flavonoids compounds and showing activity antioxidant. (C) 2010 Published by Elsevier Ltd.
Resumo:
The antioxidant capacity of 2-(3,5-diaryl-4,5-dihydro-1H-pyrazol-1-yl)-4-phenylthiazoles was evaluated. The values of antioxidant capacities of compounds 2d and 2e were found to be, respectively, 2,700 +/- 150 and 3,135 +/- 230 TE by the ORAC method, corresponding to a significant antioxidant capacity.