90 resultados para pharmaceutical drugs
Resumo:
Thermal analysis has been widely used for obtaining information about drug-polymer interactions and for pre-formulation studies of pharmaceutical dosage forms. In this work, biodegradable microparticles Of Poly (D,L-lactide-co-glycolide) (PLGA) containing triamcinolone (TR) in various drug:polymer ratios were produced by spray drying. The main purpose of this study was to study the effect of the spray-drying process not only on the drug-polymer interactions but also on the stability of microparticles using differential scanning calorimetry (DSC), thermogravimetry (TG) and derivative thermogravimetry (DTG), X-ray analysis (XRD), and infrared spectroscopy (IR). The evaluation of drug-polymer interactions and the pre-formulation studies were assessed using the DSC, TG and DTG, and IR. The quantitative analysis of drugs entrapped in PLGA microparticles was performed by the HPLC method. The results showed high levels of drug-loading efficiency for all used drug: polymer ratio, and the polymorph used for preparing the microparticles was the form B. The DSC and TG/DTG profiles for drug-loaded microparticles were very similar to those for the physical mixtures of the components. Therefore, a correlation between drug content and the structural and thermal properties of drug-loaded PLGA microparticles was established. These data indicate that the spray-drying technique does not affect the physico-chemical stability of the microparticle components. These results are in agreement with the IR analysis demonstrating that no significant chemical interaction occurs between TR and PLGA in both physical mixtures and microparticles. The results of the X-ray analysis are in agreement with the thermal analysis data showing that the amorphous form of TR prevails over a small fraction of crystalline phase of the drug also present in the TR-loaded microparticles. From the pre-formulation studies, we have found that the spray-drying methodology is an efficient process for obtaining TR-loaded PLGA microparticles. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The aim of the study was to investigate the anti-trypanocidal activities of natural chromene and chromene derivatives. Five chromenes were isolated from Piper gaudichaudianum and P. aduncum, and a further seven derivatives were prepared using standard reduction, methylation and acetylation procedures. These compounds were assayed in vitro against epimastigote forms of Trypanosoma cruzi, the causative agent of Chagas disease. The results showed that the most of the compounds, especially those possessing electron-donating groups as substituents on the aromatic ring, showed potent trypanocidal activity. The most active compound, [(2S)-methyl-2-methyl-8-(3 ``-methylbut-2 ``-enyl)-2-(4`-methylpent-3`-enyl)-2H-chromene-6-carboxylate], was almost four times more potent than benznidazole (the positive control) and showed an IC50 of 2.82 mu M. The results reveal that chromenes exhibit significant anti-trypanocidal activities and indicate that this class of natural product should be considered further in the development of new and more potent drugs for use in the treatment of Chagas disease.
Resumo:
Captopril (CAP) was the first commercially available angiotensine-converting enzyme (ACE) inhibitor. In the anti-hypertensive therapy is considered the selected drug has to be therapeutically effective together with reduced toxicity. CAP is an antihypertensive drug currently being administered in tablet form. In order to investigate the possible interactions between CAP and excipients in tablets formulations, differential scanning calorimetry (DSC) and thermogravimetric (TG) analysis completed by X-ray powder diffraction (XRPD) and Fourier transform infrared spectroscopy (FTIR) were used for compatibility studies. A possible drug-excipient interaction was observed with magnesium stearate by DSC technique.
Resumo:
A simple, fast, accurate, and sensitive spectrophotometric method was developed to determine zinc(II). This method is based on the reaction of Zn(II) with di-2-pyridyl ketone benzoylhydrazone (DPKBH), at pH=5.5 and 50% (v/v) ethanol. Beers law was obeyed in the range 0.020-1.82 mu g mL(-1) with a molar apsorptivity of 3.64 x 10(4) L mol(-1) cm(-1), and a detection limit (3) of 2.29 mu g L-1. The action of some interfering ions was verified and the developed method applied to pharmaceutical and biological samples. The results were then compared with those obtained by using a flame atomic absorption technique.
Resumo:
Three novel acetato-bridged dinuclear copper(II) complexes with 5-nitroimidazoles (CuAcNtrim) and the known copper-acetato-metronidazole have been prepared by an environment-friendly route and spectroscopically characterized. The CuAcNtrim compounds of formula [Cu(2)(mu-O(2)CCH(3))(4)Ntrim(2)], where Ntrim = metronidazole (1), secnidazole (2), tinidazole (3) or nimorazole (4), exhibit dimeric copper-acetato paddle-wheel structures with Ntrim axial ligands coordinated to copper(II) ions through the N(3) atoms of the imidazole rings. EPR data indicate antiferromagnetic behavior for this novel series of copper complexes. The constant coupling has been found to decrease along with the increasing of basicity of the Ntrim axial ligand. The CuAcNtrim complexes and the correspondent Ntrim parent drugs have shown radiosensitizer properties for Hep2 (human larynx cancer) cell line in vitro. The best enhancement of radiosensitizer activity upon coordination of the Ntrim drug to copper(II) has been found for the nimorazole compound which has the strongest Cu-Ntrim bond and exhibits the highest lipophilicity within the series of CuAcNtrim complexes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this work, a series of 10 structural procaine analogs have been synthesized in order to investigate the structural features affecting the stability of ion pair formation and its influence on the lipophilicity of ionizable compounds. The structural variation within this series was focused on the terminal nitrogen substituents and on the intermediate chain linkage nature. The hydrophobic parameters log P(n) and log P(i) (partition coefficient of the neutral and ionic species, respectively), as well as the ionization constants pK(a) and pK(a)(oct), were obtained from log D-pH profiles measured at pH values ranging from 2 to 12. The difference between log P(i) and log P(n) values (i.e. difflog P) of each prepared compound was considered a measure of the stability of ion pair formation. In this set, the difflog P values varied nearly over one log unit, ranging from -2.40 to -3.37. It has been observed that the presence of hydrogen bonding groups (especially donor) and low steric hindrance around the terminal amine ionizable group increases the relative lipophilicity of the ionic species as compared to the corresponding neutral species. These results were interpreted as due to the increased stability of ion pairs of the compounds bearing these structural features. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to develop a fast capillary electrophoresis method for the determination of propranolol in pharmaceutical preparations. In the method development the pH and constituents of the background electrolyte were selected using the effective mobility versus pH curves. Benzylamine was used as the internal standard. The background electrolyte was composed of 60 mmol L(-1) tris(hydroxymethyl)aminomethane and 30 mmol L(-1) 2-hydroxyisobutyric acid,at pH 8.1. Separation was conducted in a fused-silica capillary (32 cm total length and 8.5 cm effective length, 50 mu m I.D.) with a short-end injection configuration and direct UV detection at 214 nm. The run time was only 14 s. Three different strategies were studied in order to develop a fast CE method with low total analysis time for propranolol analysis: low flush time (Lflush) 35 runs/h, without flush (Wflush) 52 runs/h, and Invert (switched polarity) 45 runs/h. Since the three strategies developed are statistically equivalent, Mush was selected due to the higher analytical frequency in comparison with the other methods. A few figures of merit of the proposed method include: good linearity (R(2) > 0.9999); limit of detection of 0.5 mg L(-1): inter-day precision better than 1.03% (n = 9) and recovery in the range of 95.1-104.5%. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The electrochemical oxidation of promethazine hydrochloride was made on highly boron-doped diamond electrodes. Cyclic voltammetry experiments showed that the oxidation mechanisms involved the formation of an adsorbed product that is more readily oxidized, producing a new peak with lower potential values whose intensity can be increased by applying the accumulation potential for given times. The parameters were optimized and the highest current intensities were obtained by applying +0.78 V for 30 seconds. The square-wave adsorptive voltammetry results obtained in BR buffer showed two well-defined peaks, dependent on the pH and on the voltammetric parameters. The best responses were obtained at pH 4.0, frequency of 50 s(-1), step of 2 mV, and amplitude of 50 mV. Under these conditions, linear responses were obtained for concentrations from 5.96 x 10(-7) to 4.76 x 10(-6) mol L-1, and calculated detection limits of 2.66 x 10(-8) mol L-1 (8.51 mu g L-1) for peak 1 and of 4.61 x 10(-8) mol L-1 (14.77 mu g L-1) for peak 2. The precision and accuracy were evaluated by repeatability and reproducibility experiments, which yielded values of less than 5.00% for both voltammetric peaks. ne applicability of this procedure was tested on commercial formulations of promethazine hydrochloride by observing the stability, specificity, recovery and precision of the procedure in complex samples. All results obtained were compared to recommended procedure by British Pharmacopeia. The voltammetric results indicate that the proposed procedure is stable and sensitive, with good reproducibility even when the accumulation steps involve short times. It is therefore very suitable for the development of the electroanalytical procedure, providing adequate sensitivity and a reliable method.
Resumo:
Several colorimetric and chromatographic methods have been used for the identification and quantification of methyldopa (MA) in pharmaceutical formulations and clinical samples. However, these methods are time- and reagent-consuming, which stimulated our efforts to develop a simple, fast, and low-cost alternative method. We carried out an electroanalytical method for the determination of MA in pharmaceutical formulations using the crude enzymatic extract of laccase from Pycnoporus sanguineus as oxidizing agent. This method is based on the biochemical oxidation of MA by laccase (LAC), both in solution, followed by electrochemical reduction on glassy carbon electrode surface. This method was employed for the determination of MA in pure and pharmaceutical formulations and compared with the results obtained using the official method. A wide linear curve from 23 x 10(-5) to 1 x 10(-4) mol L(-1) was found with a detection limit calculated from 43 x 10(-6) mol L(-1).
Resumo:
The kinetic resolution of (+/-)-iodophenylethanols was carried out using lipase from Candida antarctica and in some cases the enantiomeric excesses were high (up to >98%). Enantiomerically enriched (S)-iodophenylethanols produced by the enzymatic resolution process were used in the synthesis of chiral biphenyl compounds by the Suzuki reaction with good yields (63-65%). (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A graphite-polyurethane composite electrode has been used for the determination of furosemide, a antihypertensive drug, in pharmaceutical samples by anodic oxidation. Cyclic voltammetry and electrochemical impedance spectroscopy were used to characterize the electrooxidation process at +1.0 V vs. SCE over a wide pH range, with the result that no adsorption of analyte or products occurs, unlike at other carbon-based electrode materials. Quantification was carried out using cyclic voltammetry, differential pulse voltammetry, and square-wave voltammetry. Linear ranges were determined (up to 21 mu mol L-1 with cyclic voltammetry) as well as limits of detection (0.15 mu mol L-1 by differential pulse voltammetry). Four different types of commercial samples were successfully analyzed. Recovery tests were performed which agreed with those obtained by spectrophotometric evaluation. The advantages of this electrode material for repetitive analyzes, due to the fact that no electrode surface renewal is needed owing to the lack of adsorption, are highlighted.
Resumo:
Direct analysis, with minimal sample pretreatment, of antidepressant drugs, fluoxetine, imipramine, desipramine, amitriptyline, and nortriptyline in biofluids was developed with a total run time of 8 min. The setup consists of two HPLC pumps, injection valve, capillary RAM-ADS-C18 pre-column and a capillary analytical C 18 column connected by means of a six-port valve in backflush mode. Detection was performed with ESI-MS/MS and only 1 mu m of sample was injected. Validation was adequately carried out using FLU-d(5) as internal standard. Calibration curves were constructed under a linear range of 1-250 ng mL(-1) in plasma, being the limit of quantification (LOQ), determined as 1 ng mL(-1), for all the analytes. With the described approach it was possible to reach a quantified mass sensitivity of 0.3 pg for each analyte (equivalent to 1.1-1.3 fmol), translating to a lower sample consumption (in the order of 103 less sample than using conventional methods). (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A solid graphite-polyurethane composite electrode has been used to determine release profiles of verapamil, a calcium-channel blocker. The electro-oxidation process was characterized by cyclic voltammetry and electrochemical impedance spectroscopy and showed no adsorption of analyte or oxidation products, unlike at other carbon-based electrodes. Quantification gave linear ranges up to 40molL-1 with cyclic voltammetry and detection limits of 0.7molL-1 by differential pulse and square-wave voltammetry. Commercial product samples were successfully analyzed with results equal to those from spectrophotometry. Because no electrode surface renewal is needed, this electrode material has many advantages.
Resumo:
A cathodically pretreated boron-doped diamond electrode was used for the simultaneous anodic determination of ascorbic acid (AA) and caffeine (CAF) by differential pulse voltammetry Linear calibration curves (r = 0 999) were obtained from 1 9 x 10(-5) to 2 I x 10(-4) mol L(-1) for AA and from 9 7 x 10(-6) to 1 1 x 10-4 mol L(-1) for CAF. with detection limits of 19 wool L(-1) and 7 0 mu nol L(-1). respectively This method was successfully applied for the determination of AA and CAF in pharmaceutical formulations. with results equal to those obtained using a HPLC reference method
Resumo:
A simple and highly selective electrochemical method was developed for the single or simultaneous determination of paracetamol (N-acetyl-p-aminophenol, acetaminophen) and caffeine (3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione) in aqueous media (acetate buffer, pH 4.5) on a boron-doped diamond (BDD) electrode using square wave voltammetry (SWV) or differential Pulse voltammetry (DPV). Using DPV with the cathodically pre-treated BDD electrode, a separation of about 550 mV between the peak oxidation potentials Of paracetamol and caffeine present in binary mixtures was obtained. The calibration curves for the simultaneous determination of paracetamol and caffeine showed an excellent linear response, ranging from 5.0 x 10(-7) mol L(-1) to 8.3 x 10(-7) mol L(-1) for both compounds. The detection limits for the simultaneous determination of paracetamol and caffeine were 4.9 x 10(-7) mol L-1 and 3.5 x 10(-8) mol L(-1), respectively. The proposed method Was Successfully applied in the simultaneous determination of paracetamol and caffeine in several pharmaceutical formulations (tablets), with results similar to those obtained using a high-performance liquid chromatography method (at 95% confidence level). (C) 2008 Elsevier BY. All rights reserved.