123 resultados para cartilage injury
Resumo:
Background. Subsequent ischaemic episodes may induce renal resistance. P21 is a cell cycle inhibitor that may be induced by oxygen-free radicals and may have a protective effect in ischaemic acute kidney injury (AKI). This study aimed at evaluating the role of oxidative stress and p21 on tubular resistance in a model of acquired resistance after renal ischaemia and in isolated renal tubules. Methods. Wistar rats were divided into: Group 1-sham; Group 2-sham operated and after 2 days submitted to 45-min ischaemia; and Group 3-45-min ischaemia followed after 2 days by a second 45-min ischaemia. Plasma urea was evaluated on Days 0, 2 and 4. Serum creatinine, creatinine clearance and oxidants (thiobarbituric acid-reactive substances) were determined 48 h after the second procedure (Day 4). Histology, immunohistochemistry for lymphocytes (CD3), macrophages (ED1), proliferation (PCNA) and apoptosis (TUNEL) were also evaluated. Rat proximal tubules (PTs) were isolated by collagenase digestion and Percoll gradient from control rats and rats previously subjected to 35 min of ischaemia. PTs were submitted to 15-min hypoxia followed by 45-min reoxygenation. Cell injury was assessed by lactate dehydrogenase release and hydroperoxide production (xylenol orange). Results. Ischaemia induced AKI in Group 2 and 3 rats. Subsequent ischaemia did not aggravate renal injury, demonstrating renal resistance (Group 3). Renal function recovery was similar in Group 2 and 3. Plasma and urine oxidants were similar among in Group 2 and 3. Histology disclosed acute tubular necrosis in Group 2 and 3. Lymphocyte infiltrates were similar among all groups whereas macrophages infiltrate was greater in Group 3. Cell proliferation was greater in Group 2 compared with Group 3. Apoptosis was similar in groups 2 and 3. The p21 expression was increased only in Group 3 whereas it was similar in groups 1 and 2. PTs from the ischaemia group were sensitive to hypoxia but resistant to reoxygenation injury which was followed by lower hydroperoxide production compared to control PT. Conclusion. Renal resistance induced by ischaemia was associated with cell mechanism mediators involving oxidative stress and increased p21 expression.
Resumo:
Purpose: alpha-Melanocyte stimulating hormone protects kidneys against ischemia and sepsis induced acute kidney injury in rodents. We examined the efficacy of a-melanocyte stimulating hormone analogue AP214 to protect against acute kidney injury in higher vertebrates. Materials and Methods: We performed a prospective, blinded, randomized, placebo controlled study in 26 pigs. Laparoscopic technique was used for left nephrectomy and to induce complete warm ischemia in the right kidney for 120 minutes. AP214 (200 mu g/kg intravenously) was administered daily on the day of surgery and for 5 days thereafter. Kidney function was measured for 9 days. We measured changes in serum creatinine, estimated glomerular filtration rate, serum C-reactive protein and urine interleukin-18. Results: In the placebo control and AP214 groups mean peak serum creatinine was 10.2 vs 3.92 mg/dl and the estimated glomerular filtration rate nadir was 22.9 vs 62.6 ml per minute per kg (each p = 0.001). Functional nadir occurred at 72 vs 24 hours in the control vs AP214 groups. Estimated glomerular filtration rate outcome on postoperative day 9 was 118 vs 156 ml per minute per kg in the control vs AP214 groups (p = 0.04). Conclusions: We noted a robust renoprotective effect of AP214. A similar AP214 effect may be observed in humans. Future research includes mechanistic studies in pigs and a phase II human clinical trial of AP214 in kidney transplant and partial nephrectomy populations.
Resumo:
INTRODUCTION: Penetrating injury of the skull and brain is relatively uncommon, representing about 0.4% of head injuries. In this paper the Authors describe a case of patient victim of transorbital stab with brain injury with good recovery and review the literature about cranial stab wound. CASE REPORT: A 23-year-old man was involved in an altercation which resulted in the patient sustaining wounds to the head, with penetrating in left transorbital, affecting the eye. At arrival to the first trauma center the patient was conscient and complete responsive with 15 points in Glasgow Coma Scale, and motor deficit grade III. CT scan demonstrated left periventricular brain hematoma and supraorbital fracture. A four-vessel cerebral angiogram demonstrated no anormality. In this evolution patient presented good neurologic outcome. CONCLUSION: In patients conscients with no surgical lesion like our patient, the hospital discharge must occurr after the angiogram have excluded intracranial vascular lesion.
Resumo:
Previous studies have suggested that abnormal corneal wound healing in patients after photorefractive keratectomy (PRK) is associated with the appearance of myofibroblasts in the stroma between two and four weeks after surgery. The purpose of this study was to examine potential myofibroblast progenitor cells that might express other filament markers prior to completion of the differentiation pathway that yields alpha-smooth muscle actin (SMA)-expressing myofibroblasts associated with haze localized beneath the epithelial basement membrane after PRK. Twenty-four female rabbits that had -9 diopter PRK were sacrificed at 1 week, 2 weeks, 3 weeks or 4 weeks after surgery. Corneal rims were collected, frozen at -80 degrees C, and analyzed by immunocytochemistry using anti-vimentin, anti-desmin, and anti-SMA antibodies. Double immunostaining was performed for the co-localization of SMA with vimentin or desmin with SMA. An increase in vimentin expression in stromal cells is noted as early as 1 week after PRK in the rabbit cornea. As the healing response continues at two or three weeks after surgery, many stromal cells expressing vimentin also begin to express desmin and SMA. By 4 weeks after the surgery most, if not all, myofibroblasts express vimentin, desmin and SMA. Generalized least squares regression analysis showed that there was strong evidence that each of the marker groups differed in expression over time compared to the other two (p < 0.01). Intermediate filaments - vimentin and desmin co-exist in myofibroblasts along with SMA and may play an important role in corneal remodeling after photorefractive keratectomy. The earliest precursors of myofibroblasts destined to express SMA and desmin are detectible by staining for vimentin at 1 week after surgery. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
OBJECTIVE: A new nerve transfer technique using a healthy fascicle of the posterior cord for suprascapular nerve reconstruction is presented. This technique was used in a patient with posttraumatic brachial plexopathy resulting in upper trunk injury with proximal root stumps that were unavailable for grafting associated with multiple nerve dysfunction. CLINICAL PRESENTATION: A 45-year-old man sustained a right brachial plexus injury after a bicycle accident. Clinical evaluation and electromyography indicated upper trunk involvement. Trapezius muscle function and triceps strength were normal on physical examination. INTERVENTION: The patient underwent a combined supra- and infraclavicular approach to the brachial plexus. A neuroma-in-continuity of the upper trunk and fibrotic C5 and C6 roots were identified. Electrical stimulation of the phrenic and spinal accessory nerves produced no response. The suprascapular nerve was dissected from the upper trunk, transected, and rerouted to the infraclavicular fossa. A healthy fascicle of the posterior cord to the triceps muscle was transferred to the suprascapular nerve. At the time of the 1-year follow-up evaluation, arm abduction against gravity and external rotation reached 40 and 34 degrees, respectively. CONCLUSION: The posterior cord can be used as a source of donor fascicle to the suprascapular nerve after its infraclavicular relocation. This new intraplexal nerve transfer could be applied in patients with isolated injury of the upper trunk and concomitant lesion of the extraplexal nerve donors usually used for reinnervation of the suprascapular nerve.
Resumo:
Previous studies have suggested that abnormal corneal wound healing in patients after photorefractive keratectomy (PRK) is associated with the appearance of myofibroblasts in the stroma between two and four weeks after surgery. The purpose of this study was to examine potential myofibroblast progenitor cells that might express other filament markers prior to completion of the differentiation pathway that yields a-smooth muscle actin (SMA)-expressing myofibroblasts associated with haze localized beneath the epithelial basement membrane after PRK. Twenty-four female rabbits that had -9 diopter PRK were sacrificed at I week, 2 weeks, 3 weeks or 4 weeks after surgery. Corneal rims were collected, frozen at -80 degrees C, and analyzed by immunocytochemistry using anti-vimentin, anti-desmin, and anti-SMA antibodies. Double immunostaining was performed for the co-localization of SMA with vimentin or desmin with SMA. An increase in vimentin expression in stromal cells is noted as early as 1 week after PRK in the rabbit cornea. As the healing response continues at two or three weeks after surgery, many stromal cells expressing vimentin also begin to express desmin and SMA. By 4 weeks after the surgery most, if not all, myofibroblasts express vimentin, desmin and SMA. Generalized least squares regression analysis showed that there was strong evidence that each of the marker groups differed in expression over time compared to the other two (p < 0.01). Intermediate filaments - vimentin and desmin co-exist in myofibroblasts along with SMA and may play an important role in corneal remodeling after photorefractive keratectomy. The earliest precursors of myofibroblasts destined to express SMA and desmin are detectible by staining for vimentin at I week after surgery. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The impact of lung remodelling in respiratory mechanics has been widely studied in bleomycin-induced lung injury. However, little is known regarding the relationship between the amount of lung inflammation and pulmonary tissue mechanics. For this purpose, rats were intratracheally instilled with bleomycin (n = 29) or saline (n = 8) and sacrificed at 3, 7, or 15 days. Forced oscillatory mechanics as well as indices of remodelling (elastic fibre content and hydroxyproline) and inflammation (myeloperoxidase content, total cell count, alveolar wall thickness, and lung water content) were studied in lung tissue strips. Tissue resistance increased significantly at day 15, while hysteresivity was significantly higher in bleomycin group compared to control at all time points. Elastic fibres, hydroxyproline and myeloperoxidase, contents augmented after bleomycin at days 7 and 15. Tissue resistance and hysteresivity were significantly correlated with myeloperoxidase, elastic fibre and lung water content. In conclusion, inflammatory structural changes and elastogenesis are the main determinants for hysteretic changes in this 2-week bleomycin-induced lung injury model. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Background Changes in the shape of the capnogram may reflect changes in lung physiology. We studied the effect of different ventilation/perfusion ratios (V/Q) induced by positive end-expiratory pressures (PEEP) and lung recruitment on phase III slope (S(III)) of volumetric capnograms. Methods Seven lung-lavaged pigs received volume control ventilation at tidal volumes of 6 ml/kg. After a lung recruitment maneuver, open-lung PEEP (OL-PEEP) was defined at 2 cmH(2)O above the PEEP at the onset of lung collapse as identified by the maximum respiratory compliance during a decremental PEEP trial. Thereafter, six distinct PEEP levels either at OL-PEEP, 4 cmH(2)O above or below this level were applied in a random order, either with or without a prior lung recruitment maneuver. Ventilation-perfusion distribution (using multiple inert gas elimination technique), hemodynamics, blood gases and volumetric capnography data were recorded at the end of each condition (minute 40). Results S(III) showed the lowest value whenever lung recruitment and OL-PEEP were jointly applied and was associated with the lowest dispersion of ventilation and perfusion (Disp(R-E)), the lowest ratio of alveolar dead space to alveolar tidal volume (VD(alv)/VT(alv)) and the lowest difference between arterial and end-tidal pCO(2) (Pa-ETCO(2)). Spearman`s rank correlations between S(III) and Disp(R-E) showed a =0.85 with 95% CI for (Fisher`s Z-transformation) of 0.74-0.91, P < 0.0001. Conclusion In this experimental model of lung injury, changes in the phase III slope of the capnograms were directly correlated with the degree of ventilation/perfusion dispersion.
Resumo:
Many features of chronic kidney disease may be reversed, but it is unclear whether advanced lesions, such as adhesions of sclerotic glomerular tufts to Bowman`s capsule (synechiae), can resolve during treatment. We previously showed, using a renal ablation model, that the renoprotective effect of the AT-1 receptor blocker, losartan, is dose-dependent. Here we determined if moderate and advanced glomerular lesions, associated with streptozotocin-induced diabetes, regress with conventional or high-dose losartan treatment. Using daily insulin injection for 10 months, we maintained diabetic adult male Munich-Wistar rats in a state of moderate hyperglycemia. Following this period, some rats continued to receive insulin with or without conventional or high-dose losartan for an additional 2 months. Diabetic rats pretreated with insulin for 10 months and age-matched non-diabetic rats served as controls. Mesangial expansion was found in the control diabetic rats and was exacerbated in those rats maintained on only insulin for an additional 2 months. Conventional and high-dose losartan treatments reduced this mesangial expansion and the severity of synechiae lesions below that found prior to treatment; however, the frequency of the latter was unchanged. There was no dose-response effect of losartan. Our results show that regression of mesangial expansion and contraction of sclerotic lesions is feasible in the treatment of diabetes, but complete resolution of advanced glomerulosclerosis may be hard to achieve.
Resumo:
Objectives: Severe glottic/subglottic stenosis (complex laryngotracheal stenosis) is a rare but challenging complication of endotracheal intubation. Laryngotracheal reconstruction with cartilage graft and an intralaryngeal stent is a procedure described for complex laryngotracheal stenosis management in children; however, for adults, few options remain. Our aim was to analyze the results of laryngotracheal reconstruction as a treatment for complex laryngotracheal stenosis in adults, considering postoperative and long-term outcome. Methods: Laryngotracheal reconstruction (laryngeal split with anterior and posterior interposition of a rib cartilage graft) has been used in our institution to manage glottic/subglottic stenosis restricted to the larynx; laryngotracheal reconstruction associated with cricotracheal resection has been used to treat glottic/subglottic/upper tracheal stenosis (extending beyond the second tracheal ring). A retrospective study was conducted, including all patients with complex laryngotracheal stenosis treated surgically in our institution from January of 2002 until December of 2005. Results: Twenty patients (10 male and 10 female patients; average age, 36.13 years; age range, 18-54 years) were included. There were no deaths, and the postoperative complications were as follows: dysphonia, 25%; subcutaneous emphysema, 10%; tracheocutaneous fistula, 20%; wound infection, 15%; and bleeding, 5.0%. Eighty percent of the patients were completely decannulated after a mean of 23.4 months of follow-up (range, 4 -55 months). Conclusions: Laryngeal split with anterior and posterior cartilage graft interposition as an isolated procedure or associated with a cricotracheal resection is a feasible and low-morbidity alternative for complex laryngotracheal stenosis treatment.
Resumo:
The purpose of this study was to investigate whether the additional sensory information could improve postural control in individuals with unilateral anterior cruciate ligament (ACL) injury. Twenty-eight individuals with unilateral ACL injury (mean age 23.6, 26 males, 2 females) and 28 healthy young control subjects (mean age 22.1 years, 26 males, 2 females) participated in this study. Postural control was evaluated with subjects single-leg standing on a force platform with eyes closed under two sensory conditions: normal sensory information and light touch to a stationary bar (applied force below 1 N). Three trials of 30 5 were performed in each single-leg stance and in each sensory condition. Mean sway amplitude and predominant frequency of center of pressure were calculated for both anterior-posterior and medial-lateral directions. Individuals with ACL injury showed greater mean sway amplitude than healthy control individuals even though the predominant frequency was similar for both groups. Additional sensory information improved postural control performance in individuals with ACL injury and healthy control, with a greater effect observed for the ACL group. Based on these results, we suggest that reduction in postural control performance in individuals with ACL injury would be due to the reduction of sensory information provided by the ACL, but when sensory information is enhanced, postural control performance improves. These results have implications for novel approaches to improve stability in individuals with ACL injury. (c) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background. Ischemia-reperfusion injury is believed to be a major cause of transferred skin flap failure. Cigarette smoking is known to be associated with endogenous antioxidant depletion, hypercoagulability, and cutaneous vasoconstriction. This investigation was carried out to study possible effects of pentoxyfilline or heparin on rat skin reperfusion injury under tobacco exposure. Materials and Methods. Thirty-six rats were randomized into two major groups: 18 were exposed to cigarette smoke during a 4 wk period prior to surgery; the remaining 18 underwent a sham smoking procedure. Each group was further divided into three equal subgroups: heparin, pentoxyfilline, and saline solution. One identical skin flap was raised in each animal. The vasculature of the flap was clamped for 3 h and reperfused for 5 min. A venous blood sample was obtained from the flap after reperfusion for serum malondialdehyde (MDA) and myeloperoxidase (MPO) analysis. Flap survival was assessed 7 d after the procedure. Results. The lipid peroxidation levels and flap necrosis were significantly higher in the cigarette-smoking group skin flaps. There was also a decrease of MPO activity in this group compared with the nonsmoking group. Heparin-treated rats had significantly lower MDA levels and showed the most viable percent area among smoking rats. Conclusions. These data suggest that heparin had a significant beneficial effect both on flap survival and on the lipid peroxidation reduction after smoke exposure in the rat axial-pattern skin flap subjected to ischemia and reperfusion injury. Pharmacologic therapy may represent an alternative way to counteract tobacco effects in flap surgery in emergency situations. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Aim. Some stable prostaglandin analogues such as alprostadil have been used to attenuate the deleterious effects of ischemia and reperfusion injury. The aim of this paper was to test if alprostadil can decrease the ischemia- reperfusion injury in rat skeletal muscle using muscular enzymes as markers, such as aspartate aminotransferase (AST), creatine kinase (CPK), lactate dehydrogenase (LDH); degeneration products of cell membrane-malondialdehyde (MDA) and muscle glycogen storage. Methods. Thirty male Wistar rats were used in a model of hind limb ischemia achieved by infrarenal aortic cross-clamping. The animals were randomized into three equal groups (N=10) submitted to 5 hours of ischemia followed by one hour of reperfusion. The first group (control) received continuous intravenous infusion of saline solution and the second group (preischemia, GPI) received continuous intravenous infusion of alprostadil throughout the experiment starting 20 minutes before the aortic cross-clamping. The third group, prereperfusion (GPR), received alprostadil only during the reperfusion period, with intravenous infusion being started 10 min before the clamp release. Results. There was no difference in CPK, LDH, AST or tissue glycogen values between groups. However, a significant elevation in MDA was observed in the GPI and GPR groups compared to the control group, with no difference between the GPI and GPR. Conclusion. Under conditions of partial skeletal muscle ischemia, alprostadil did not reduce the release of muscular enzymes, the consumption of tissue glycogen or the effects of ischemia and reperfusion on the cell membrane, characterized by lipid peroxidation.
Resumo:
Background/Aims. The transcription factor nuclear factor-kappa B (NF-kappa B) exerts a pivotal role in the pathogenesis of hepatic ischemia/reperfusion (I/R) injury. Caffeic acid phenyl ester (CAPE), a potent and specific NF-kappa B inhibitor, presents protective effects on I/R injury in some tissues. This study aimed to evaluate the effect of CAPE on hepatic I/R injury in rats. Materials and methods. Wistar rats were submitted to a sham operation, 60 min ischemia, or 60 min ischemia plus saline or CAPE treatment followed by 6 h reperfusion. Liver tissue injury was evaluated by alanine aminotransferase, aspartate aminotransferase, and tissue glutathione measurement, and histological damage score. Apoptotic hepatocytes were determined by the transferase-mediated dUTP-biotin nick-end labeling assay. Hepatic neutrophil accumulation was assessed by the naphthol method. Lipid peroxidation and NF-kappa B activation were evaluated by 4-hydroxynonenal and NF-kappa B p65 immunohistochemistry, respectively. Results. Animals submitted to ischemia showed a marked increase of alanine aminotransferase and aspartate aminotransferase after reperfusion, but with lower levels in CAPE group. Tissue glutathione content declined gradually during ischemia to reperfusion and was partially recovered with CAPE treatment. The histological damage score, apoptosis index, and neutrophil infiltration, as well as 4-hydroxynonenal and NF-kappa B p65 nuclear labeling, were higher in the liver of animals submitted to I/R compared to the ischemia group. However, the CAPE treatment significantly reduced all of these alterations. Conclusions. CAPE was able to protect the liver against normothermic I/R injury in rats. This effect may be associated with the inhibition of the NF-kappa B signaling pathway and decrease of the acute inflammatory response following I/R in the liver. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Background/Aims. Nuclear factor kappa B (NF kappa B) plays important role in the pathogenesis of skeletal muscle ischemia/reperfusion (I/R) injury. Caffeic acid phenyl ester (CAPE), a potent NF kappa B inhibitor, exhibits protective effects on I/R injury in some tissues. In this report, the effect of CAPE on skeletal muscle I/R injury in rats was studied. Methods. Wistar rats were submitted to sham operation, 120-min hindlimb ischemia, or 120-min hindlimb ischemia plus saline or CAPE treatment followed by 4-h reperfusion. Gastrocnemius muscle injury was evaluated by serum aminotransferase levels, muscle edema, tissue glutathione and malondialdehyde measurement, and scoring of histological damage. Apoptotic nuclei were determined by a terminal uridine deoxynucleotidyl transferase dUTP nick end labeling assay. Muscle neutrophil and mast cell accumulation were also assessed. Lipoperoxidation products and NF kappa B were evaluated by 4-hydroxynonenal and NF kappa B p65 immunohistochemistry, respectively. Results. Animals submitted to ischemia showed a marked increase in aminotransferases after reperfusion, but with lower levels in the CAPE group. Tissue glutathione levels declined gradually during ischemia to reperfusion, and were partially recovered with CAPE treatment. The histological damage score, muscle edema percentage, tissue malondialdehyde content, apoptosis index, and neutrophil and mast cell infiltration, as well as 4-hydroxynonenal and NF kappa B p65 labeling, were higher in animals submitted to I/R compared with the ischemia group. However, the CAPE treatment significantly reduced all of these alterations. Conclusions. CAPE was able to protect skeletal muscle against I/R, injury in rats. This effect may be associated with the inhibition of the NF kappa B signaling pathway and decrease of the tissue inflammatory response following skeletal muscle I/R. (C) 2009 Elsevier Inc. All rights reserved.