80 resultados para Specific tasks
Resumo:
Background and Purpose-Functional MRI is a powerful tool to investigate recovery of brain function in patients with stroke. An inherent assumption in functional MRI data analysis is that the blood oxygenation level-dependent (BOLD) signal is stable over the course of the examination. In this study, we evaluated the validity of such assumption in patients with chronic stroke. Methods-Fifteen patients performed a simple motor task with repeated epochs using the paretic and the unaffected hand in separate runs. The corresponding BOLD signal time courses were extracted from the primary and supplementary motor areas of both hemispheres. Statistical maps were obtained by the conventional General Linear Model and by a parametric General Linear Model. Results-Stable BOLD amplitude was observed when the task was executed with the unaffected hand. Conversely, the BOLD signal amplitude in both primary and supplementary motor areas was progressively attenuated in every patient when the task was executed with the paretic hand. The conventional General Linear Model analysis failed to detect brain activation during movement of the paretic hand. However, the proposed parametric General Linear Model corrected the misdetection problem and showed robust activation in both primary and supplementary motor areas. Conclusions-The use of data analysis tools that are built on the premise of a stable BOLD signal may lead to misdetection of functional regions and underestimation of brain activity in patients with stroke. The present data urge the use of caution when relying on the BOLD response as a marker of brain reorganization in patients with stroke. (Stroke. 2010; 41:1921-1926.)
Resumo:
Background: The protective effect of carvedilol on multiple organ damage induced by angiotensin II (Ang II) remains unclear. The aim of this study was to evaluate the protective effect of carvedilol on the heart, liver, and kidney in rats infused with Ang II. Material/Methods: Wistar rats were randomly distributed into three groups: control (no treatment), continuously infused with Ang II (150 eta g/min for 72 hr), and treated with Ang II + carvedilol (90 mg/kg/d). Histological sections of the myocardium, kidney, and liver were analyzed for the presence of necrosis. Results: Ang II induced arterial hypertension which was not affected by carvedilol treatment (tail-cuff blood pressures, control: 125 +/- 13.6, Ang II: 163 +/- 27.3, Ang II + CV: 178 +/- 39.8 mmHg, p<0.05). Also, there were perivascular inflammation and necrosis in the myocardium, kidney, and hepatocytes necrosis around the terminal vein. Carvedilol treatment fully prevented damage to the heart and kidney and attenuated liver lesions induced by the Ang II infusion. Conclusions: The protective effect of carvedilol on perivascular damage induced by Ang II infusion depended on the target organ. The prevention of heart damage occurred independently of the antihypertensive effects of carvedilol.
Resumo:
Animals sensitized to allergens change their feeding behavior and avoid drinking the otherwise preferred sweetened solutions containing the allergens. This phenomenon, known as food aversion, appears to be mediated by allergen-specific IgE antibodies. Here we investigated food aversion in BALB/c and C57BL/6 mice, which differ in their allergic responses to the allergen ovalbumin as well as in their preference for sweet taste. BALB/c mice present higher levels of IgE and a natural lower preference for sweet flavors when compared to C57BL/6 mice. Specifically, we studied a conflicting situation in which animals simultaneously experienced the aversive contact with the allergen and the attractive sweet taste of increasing concentrations of sucrose. We found that BALB/c mice were more prone to develop food aversion than C57BL/6 mice and that this aversive behavior could be abolished in both strains by increasing the palatability of the solution containing the allergen. In both strains food aversion was positively correlated with the levels of allergen-specific IgE antibodies and inversely correlated with their preference for sucrose sweetened solutions. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We report here the existence of a novel subset of langerin (CD207)-positive, immature dendritic cells (DCs) (CD83(neg)) abundantly infiltrating Epstein Barr virus (EBV)-infected areas in tonsil, Hodgkin lymphoma and nasopharyngeal carcinoma. These CD207(+) DCs differ from conventional epidermal Langerhans cells in their lack of CD1a and CCR6 and their unusual tissue localization. CD207(+) DC infiltration strongly correlates with EBV infection because it was neither detected in EBV negative specimens nor in tissues infected with other human viruses. These immature DCs might represent good candidates for induction of the EBV-specific immune response.
Resumo:
In the course of attempting to define the bone ""secretome"" using a signal-trap screening approach, we identified a gene encoding a small membrane protein novel to osteoblasts. Although previously identified in silico as ifitm5, no localization or functional studies had been undertaken on this gene. We characterized the expression patterns and localization of this gene in vitro and in vivo and assessed its role in matrix mineralization in vitro. The bone specificity and shown role in mineralization led us to rename the gene bone restricted ifitm-like protein (Bril). Bril encodes a 14.8-kDa 1.34 arnino acid protein with two transmembrane domains. Northern blot analysis showed bone-specific expression with no expression in other embryonic or adult tissues. In situ hybridization and immunohistochemistry in mouse embryos showed expression localized on the developing bone. Screening of cell lines showed Bril expression to be highest in osteoblasts, associated with the onset of matrix maturation/mineralization, suggesting a role in bone formation. Functional evidence of a role in mineralization was shown by adenovirus-mediated Brit overexpression and lentivirus-mediated Bril shRNA knockdown in vitro. Elevated Bril resulted in dose-dependent increases in mineralization in UMR106 and rat primary osteoblasts. Conversely, knockdown of Bril in MC3T3 osteoblasts resulted in reduced mineralization. Thus, we identified Bril as a novel osteoblast protein and showed a role in mineralization, possibly identifying a new regulatory pathway in bone formation.