167 resultados para NANOSCIENCE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on the measurements of the quantum Hall effect states in double quantum well structures at the filling factors v = 4N + 1 and 4N + 3, where N is the Landau index number, in the presence of the in-plane magnetic field. The quantum Hall states at these filling factors vanish and reappear several times. Repeated reentrance of the transport gap occurs due to the periodic vanishing of the tunneling amplitude in the presence of the in-plane field. When the gap vanishes, the transport becomes anisotropic. The anisotropy persist at half-odd filling factors, when bilayer quantum Hall states are recovered with increase of the tilt angle. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we report on the magnetic properties of nickel nanoparticles (NP) in a SiO(2)-C thin film matrix, prepared by a polymeric precursor method, with Ni content x in the 0-10 wt% range. Microstructural analyses of the films showed that the Ni NP are homogenously distributed in the SiO(2)-C matrix and have spherical shape with average diameter of similar to 10 nm. The magnetic properties reveal features of superparamagnetism with blocking temperatures T (B) similar to 10 K. The average diameter of the Ni NP, estimated from magnetization measurements, was found to be similar to 4 nm for the x = 3 wt% Ni sample, in excellent agreement with X-ray diffraction data. M versus H hysteresis loops indicated that the Ni NP are free from a surrounding oxide layer. We have also observed that coercivity (H (C)) develops appreciably below T (B), and follows the H (C) ae [1 - (T/T (B))(0.5)] relationship, a feature expected for randomly oriented and non-interacting nanoparticles. The extrapolation of H (C) to 0 K indicates that coercivity decreases with increasing x, suggesting that dipolar interactions may be relevant in films with x > 3 wt% Ni.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By performing at) initio density functional theory (DFT) calculations and electronic transport simulations based on the OFT nonequilibrium Green`s functions method we investigate how the conformational changes of a benzene-1,4-dithiol molecule bonded to gold affect the molecular transport as the electrodes are separated from each other. In particular we consider the full evolution of the stretching process until the Junction breaking point and compare results obtained with a standard semilocal exchange and correlation functional to those computed with a self-interaction corrected method. We conclude that the inclusion of self-interaction corrections is fundamental for describing both the molecule conductance and its stability against conformational fluctuations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Defects are usually present in organic polymer films and are commonly invoked to explain the low efficiency obtained in organic-based optoelectronic devices. We propose that controlled insertion of substitutional impurities may, on the contrary, tune the optoelectronic properties of the underivatized organic material and, in the case studied here, maximize the efficiency of a solar cell. We investigate a specific oxygen-impurity substitution, the keto-defect -(CH(2)-C=O)- in underivatized crystalline poly(p-phenylenevinylene) (PPV), and its impact on the electronic structure of the bulk film, through a combined classical (force-field) and quantum mechanical (DFT) approach. We find defect states which suggest a spontaneous electron hole separation typical of a donor acceptor interface, optimal for photovoltaic devices. Furthermore, the inclusion of oxygen impurities does not introduce defect states in the gap and thus, contrary to standard donor-acceptor systems, should preserve the intrinsic high open circuit voltage (V(oc)) that may be extracted from PPV-based devices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

ZnO nanocrystals are studied using theoretical calculations based on the density functional theory. The two main effects related to the reduced size of the nanocrystals are investigated: quantum confinement and a large surface:volume ratio. The effects of quantum confinement are studied by saturating the surface dangling bonds of the nanocrystals with hypothetical H atoms. To understand the effects of the surfaces of the nanocrystals, all saturation is removed and the system is relaxed to its minimum energy position. Several different surface motifs are reported, which should be observed experimentally. Spin-polarized calculations are performed in the nonsaturated nanocrystals, leading to different magnetic moments. We propose that this magnetic moment can be responsible for the intrinsic magnetism observed in ZnO nanostructures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We performed a first-principles investigation on the structural and electronic properties of group IV (C, SiC, Si, Ge, and Sn) graphene-like sheets in flat and buckled configurations and the respective hydrogenated or fluorinated graphane-like ones. The analysis on the energetics, associated with the formation of those structures, showed that fluorinated graphane-like sheets are very stable and should be easily synthesized in the laboratory. We also studied the changes of the properties of the graphene-like sheets as a result of hydrogenation or fluorination. The interatomic distances in those graphane-like sheets are consistent with the respective crystalline ones, a property that may facilitate integration of those sheets within three-dimensional nanodevices.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interference of magneto-intersubband oscillations and microwave-induced resistance oscillations is studied in high-density triple quantum wells. We give an introduction into magnetotransport in trilayer systems and focus on photoresistance measurements. The power and frequency dependence of the observed magnetoresistance oscillations can be described by the inelastic mechanism of photoresistance, generalized to the three-subband case. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of the spin of the electron as the ultimate logic bit-in what has been dubbed spintronics-can lead to a novel way of thinking about information flow. At the same time single-layer graphene has been the subject of intense research due to its potential application in nanoscale electronics. While defects can significantly alter the electronic properties of nanoscopic systems, the lack of control can lead to seemingly deleterious effects arising from the random arrangement of such impurities. Here we demonstrate, using ab initio density functional theory and non-equilibrium Green`s functions calculations, that it is possible to obtain perfect spin selectivity in doped graphene nanoribbons to produce a perfect spin filter. We show that initially unpolarized electrons entering the system give rise to 100% polarization of the current due to random disorder. This effect is explained in terms of different localization lengths for each spin channel which leads to a new mechanism for the spin filtering effect that is disorder-driven.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work a systematic study of the dependence of the structural, electronic, and vibrational properties on nanoparticle size is performed. Based on our total energy calculations we identified three characteristic regimes associated with the nanoparticle`s dimensions: (i) below 1.5 nm (100 atoms) where remarkable molecular aspects are observed; (ii) between 1.5 and 2.0 nm (100 and 300 atoms) where the molecular behavior is influenced by the inner core crystal properties; and (iii) above 2.0 nm (more than 300 atoms) where the crystal properties are preponderant. In all considered regimes the nanoparticle`s surface modulates its properties. This modulation decreases with the increasing of the nanoparticle`s size.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interference of microwave-induced resistance oscillations and magneto-intersubband oscillations in double quantum wells exposed to a continuous microwave irradiation is under study. By comparing experimental and theoretical magnetoresistance traces at different temperatures, we confirm that the inelastic mechanism of photoresistance explains our observations up to T similar or equal to 4 K. For higher temperatures, our results suggest a deviation of the inelastic scattering time tau(in) from the predicted T(-2) dependence. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on integer and fractional microwave-induced resistance oscillations in a 2D electron system with high density and moderate mobility, and present results of measurements at high microwave intensity and temperature. Fractional microwave-induced resistance oscillations occur up to fractional denominator 8 and are quenched independently of their fractional order. We discuss our results and compare them with existing theoretical models. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present magnetotransport studies of high-density triple quantum well samples with different barrier widths. Because of electron transitions between three occupied 2D subbands, the magneto-resistance shows magneto-intersubband oscillations whose periodicity is determined by the subband separation energies. Temperature-dependent measurements allow us to extract quantum lifetime of electrons. A theoretical consideration of the observed phenomenon is also presented. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several strategies aimed at sorting single-walled carbon nanotubes (SWNT) by diameter and/or electronic structure have been developed in recent years. A nondestructive sorting method was recently proposed in which nanotube bundles are dispersed in water-surfactant solutions and submitted to ultracentrifugation in a density gradient. By this method, SWNTs of different diameters are distributed according to their densities along the centrifuge tube. A mixture of two anionic amphiphiles, namely sodium dodecylsulfate (SIDS) and sodium cholate (SC), presented the best performance in discriminating nanotubes by diameter. We present molecular dynamics studies of the water-surfactant-SWNT system. The simulations revealed one aspect of the discriminating power of surfactants: they can actually be attracted toward the interior of the nanotube cage. The binding energies of SDS and SC on the outer nanotube surface are very similar and depend weakly on diameter. The binding inside the tubes, on the contrary, is strongly diameter dependent: SDS fits best inside tubes with diameters ranging from 8 to 9 angstrom, while SC is best accommodated in larger tubes, with diameters in the range 10.5-12 angstrom. The dynamics at room temperature showed that, as the amphiphile moves to the hollow cage, water molecules are dragged together, thereby promoting the nanotube filling. The resulting densities of filled SWNT are in agreement with measured densities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate the optical properties of edge-fiinctionalized graphene nanosystems, focusing on the formation of junctions and charge-transfer excitons. We consider a class of graphene structures that combine the main electronic features of graphene with the wide tunability of large polycyclic aromatic hydrocarbons. By investigating prototypical ribbon-like systems, we show that, upon convenient choice of functional groups, low-energy excitations with remarkable charge-transfer character and large oscillator strength are obtained. These properties can be further modulated through an appropriate width variation, thus spanning a wide range in the low-energy region of the UV-vis spectra. Our results are relevant in view of designing all-graphene optoelectronic nanodevices, which take advantage of the versatility of molecular functionalization, together with the stability and the electronic properties of graphene nanostructures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The disclosure of magnetic ionic liquids (MILs) as stable dispersions of surface modified gamma-Fe(2)O(3) or CoFe(2)O(4) nanoparticles (NPs) in the 1-n-butyl-3-methylimidazolium tetrafluoroborate (BMIBF(4)) ionic liquid is reported. The magnetic NPs were characterized by X-ray powder diffraction, transmission electron microscopy, and Raman spectroscopy. The surface modified NPs have proved to form stable dispersions in BMIBF(4) in the absence of water and behave like a magnetic ionic liquid. The MILs have been characterized by Raman spectroscopy, magnetic measurements, and DSC. The stability of the magnetic NPs in BMIBF(4) is consistently explained by assuming the formation of a semiorganized protective layer composed of supramolecular aggregates in the form of [(BMI)(2)(BF(4))(3)](-). A superparamagnetic behavior and saturation magnetization of ca. 18 emu/g for a sample containing 30% w/w maghemite NPs/BMIBF(4) have been inferred from static and dynamic magnetic measurements. DSC results have shown that the MIL composed of 30% w/w CoFe(2)O(4) NPs/BMIBF(4) remains a liquid phase down to -84 degrees C.