162 resultados para Learning behavior
Resumo:
In the present work the squeeze flow technique was used to evaluate the rheological behavior of cement-based mortars containing macroscopic aggregates up to 1.2 mm. Compositions with different water and air contents were tested at three squeezing rates (0.01, 0.1 and 1 mm/s) 15 and 60 min after mixing. The mortars prepared with low (13 wt.%) and usual water content (15 wt.%) presented opposite behaviors as a function of elapsed time and squeezing speed. The first lost its cohesion with time and required higher loads when squeezed faster, while the latter became stiffer with time and was more difficult to be squeezed slowly as a result of phase segregation. Due to the increase of air content, the effects of this compressible phase became more significant and a more complex behavior was observed. Rheological properties such as elongational viscosity and yield stress were also determined. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The Learning Object (OA) is any digital resource that can be reused to support learning with specific functions and objectives. The OA specifications are commonly offered in SCORM model without considering activities in groups. This deficiency was overcome by the solution presented in this paper. This work specified OA for e-learning activities in groups based on SCORM model. This solution allows the creation of dynamic objects which include content and software resources for the collaborative learning processes. That results in a generalization of the OA definition, and in a contribution with e-learning specifications.
Resumo:
One of the e-learning environment goal is to attend the individual needs of students during the learning process. The adaptation of contents, activities and tools into different visualization or in a variety of content types is an important feature of this environment, bringing to the user the sensation that there are suitable workplaces to his profile in the same system. Nevertheless, it is important the investigation of student behaviour aspects, considering the context where the interaction happens, to achieve an efficient personalization process. The paper goal is to present an approach to identify the student learning profile analyzing the context of interaction. Besides this, the learning profile could be analyzed in different dimensions allows the system to deal with the different focus of the learning.
Resumo:
In this paper, a framework for detection of human skin in digital images is proposed. This framework is composed of a training phase and a detection phase. A skin class model is learned during the training phase by processing several training images in a hybrid and incremental fuzzy learning scheme. This scheme combines unsupervised-and supervised-learning: unsupervised, by fuzzy clustering, to obtain clusters of color groups from training images; and supervised to select groups that represent skin color. At the end of the training phase, aggregation operators are used to provide combinations of selected groups into a skin model. In the detection phase, the learned skin model is used to detect human skin in an efficient way. Experimental results show robust and accurate human skin detection performed by the proposed framework.
Resumo:
This paper investigates how to make improved action selection for online policy learning in robotic scenarios using reinforcement learning (RL) algorithms. Since finding control policies using any RL algorithm can be very time consuming, we propose to combine RL algorithms with heuristic functions for selecting promising actions during the learning process. With this aim, we investigate the use of heuristics for increasing the rate of convergence of RL algorithms and contribute with a new learning algorithm, Heuristically Accelerated Q-learning (HAQL), which incorporates heuristics for action selection to the Q-Learning algorithm. Experimental results on robot navigation show that the use of even very simple heuristic functions results in significant performance enhancement of the learning rate.
Resumo:
This paper focuses on the flexural behavior of RC beams externally strengthened with Carbon Fiber Reinforced Polymers (CFRP) fabric. A non-linear finite element (FE) analysis strategy is proposed to support the beam flexural behavior experimental analysis. A development system (QUEBRA2D/FEMOOP programs) has been used to accomplish the numerical simulation. Appropriate constitutive models for concrete, rebars, CFRP and bond-slip interfaces have been implemented and adjusted to represent the composite system behavior. Interface and truss finite elements have been implemented (discrete and embedded approaches) for the numerical representation of rebars, interfaces and composites.
Resumo:
Wear behavior of coatings has usually been described in terms of mechanical properties such as hardness (H) and effective elastic modulus (E*). Alternatively, an energy approach appears as a promising analysis taking into account the influence of those properties. In a nanoindentation test, the dissipated energy depends not only on the hardness and elastic modulus, but also on the elastic recovery (W(e)). This work aims to establish a relation between plastic deformation energy (E(p)) during depth-sensing indentation method and the grooving resistance of coatings in nanoscratch tests. An energy dissipation coefficient (K(d)) was defined, calculated as the ratio of the plastic to the total deformation energy (E(p)/E(t)), which represents the energy dissipation of materials. Reactive depositions using titanium as the target and nitrogen and methane as reactive gases were obtained by triode magnetron sputtering, in order to assess wear and nanoindentation data. A topographical, chemical and microstructural characterization has been conducted using X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), wave dispersion spectroscopy (WDS), scanning electron (SEM) and atomic force microscopy (AFM) techniques. Nanoscratch results showed that the groove depth was well correlated to the energy dissipation coefficient of the coatings. On the other hand, a reduction in the coefficient was found when the elastic recovery was increased. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The aim of the present work is to elucidate the influence of lubricants on the friction behavior of zinc phosphated coatings and provide an explanation for the results in terms of physical-chemical interactions between lubricant and phosphate. The friction behavior was studied through a sliding wear test, with a conventional ball-on-disc configuration. Discs, made of AISI 1006 low carbon steel. uncoated and coated with zinc phosphate, were tested against bearing steel balls. A stearate sodium soap, paraffinic oil and both soap and oil were used as lubricants. The sodium stearate soap was found to have the best seizure resistance. The nature of the interfacial forces between the lubricant and surface has an important role in determining the friction behavior. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
How does knowledge management (KM) by a government agency responsible for environmental impact assessment (EIA) potentially contribute to better environmental assessment and management practice? Staff members at government agencies in charge of the EIA process are knowledge workers who perform judgement-oriented tasks highly reliant on individual expertise, but also grounded on the agency`s knowledge accumulated over the years. Part of an agency`s knowledge can be codified and stored in an organizational memory, but is subject to decay or loss if not properly managed. The EIA agency operating in Western Australia was used as a case study. Its KM initiatives were reviewed, knowledge repositories were identified and staff surveyed to gauge the utilisation and effectiveness of such repositories in enabling them to perform EIA tasks. Key elements of KM are the preparation of substantive guidance and spatial information management. It was found that treatment of cumulative impacts on the environment is very limited and information derived from project follow-up is not properly captured and stored, thus not used to create new knowledge and to improve practice and effectiveness. Other opportunities for improving organizational learning include the use of after-action reviews. The learning about knowledge management in EIA practice gained from Western Australian experience should be of value to agencies worldwide seeking to understand where best to direct their resources for their own knowledge repositories and environmental management practice. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The paper presents and discusses experimental procedures, visual observations and test results considered important to obtain data that can be used in validation of constitutive relations and failure criteria. The aim is to investigate the combined effects of stress intensity, stress-triaxiality and Lode parameter on the material response and failure behavior of aluminum alloys. Smooth and pre-notched tensile and shear specimens were manufactured from both very thin sheets and thicker plates to cover a wide range of stress triaxialities and Lode parameters. In addition, modified Arcan specimens were designed allowing investigation of the effect of sudden changes in stress states and deformation modes on the material behavior. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The 475 degrees C embrittlement in stainless steels is a well-known phenomenon associated to alpha prime (alpha`) formed by precipitation or spinodal decomposition. Many doubts still remain on the mechanism of alpha` formation and its consequence on deformation and fracture mechanisms and corrosion resistance. In this investigation, the fracture behavior and corrosion resistance of two high performance ferritic stainless steels were investigated: a superferritic DIN 1.4575 and MA 956 superalloy were evaluated. Samples of both stainless steels (SS) were aged at 475 degrees C for periods varying from 1 to 1,080 h. Their fracture surfaces were observed using scanning electron microscopy (SEM) and the cleavage planes were determined by electron backscattering diffraction (EBSD). Some samples were tested for corrosion resistance using electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. Brittle and ductile fractures were observed in both ferritic stainless steels after aging at 475 degrees C. For aging periods longer than 500 h, the ductile fracture regions completely disappeared. The cleavage plane in the DIN 1.4575 samples aged at 475 degrees C for 1,080 h was mainly {110}, however the {102}, {314}, and {131} families of planes were also detected. The pitting corrosion resistance decreased with aging at 475 degrees C. The effect of alpha prime on the corrosion resistance was more significant in the DIN 1.4575 SS comparatively to the Incoloy MA 956.
Resumo:
Oxide dispersion strengthened ferritic-martensitic steels are potential candidates for applications in future fusion power plants. High creep resistance, good oxidation resistance, reduced neutron activation and microstructural long-term stability at temperatures of about 650-700 degrees C are required in this context. In order to evaluate its thermal stability in the ferritic phase field, samples of the reduced activation ferritic-martensitic 9%Cr-ODS-Eurofer steel were cold rolled to 50% and 80% reductions and further annealed in vacuum from 300 to 800 degrees C for 1 h. The characterization in the annealed state was performed by scanning electron microscopy in the backscattered electron mode, high-resolution electron backscatter diffraction and transmission electron microscopy. Results show that the fine dispersion of Y-based particles (about 10 nm in size) is effective to prevent recrystallization. The low recrystallized volume fraction (<0.1) is associated to the nuclei found at prior grain boundaries and around large M(23)C(6) particles. Static recovery was found to be the predominant softening mechanism of this steel in the investigated temperature range. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
In this work, the main factors affecting the rheological behavior of polyethylene terephtalate (PET) in the linear viscoelastic regime (water content, time delay before test, duration of experiment, and temperature) were accessed. Small amplitude oscillatory shear tests were performed after different time delays ranging from 300 to 5000 s for samples with water contents ranging from 0.02 to 0.45 wt %. Time sweep tests were carried out for different durations to explain the changes undergone by PET before and during small amplitude oscillatory shear measurements. Immediately after the time sweep tests, the PET samples were removed from the rheometer, analyzed by differential scanning calorimetry and their molar mass was obtained by viscometry analysis. It was shown that for all the samples, the delay before test and residence time within the rheometer (i.e. duration of experiment) result in structural changes of the PET samples, such as increase or decrease of molar mass, broadening of molar mass distribution, and branching phenomena. (C) 2010 Wiley Periodicals, Inc. J Appl Polym Sci 116: 3525-3533, 2010
Resumo:
In the present work, the corrosion resistance of ferritic-martensitic EUROFER 97 and ODS-EUROFER steels was tested in solutions containing NaCl or H(2)SO(4) and KSCN, both at 25 degrees C. The results were compared to those of AISI 430 ferritic and AISI 410 martensitic conventional stainless steels. The as-received samples were tested by electrochemical techniques, specifically, electrochemical impedance spectroscopy, potentiodynamic polarization curves, and double-loop electrochemical potentiokinetic reactivation tests. The surfaces were observed by scanning electron microscopy after exposure to corrosive media. The results showed that EUROFER 97 and ODS-EUROFER alloys present similar corrosion resistance but lower than ferritic AISI 430 and martensitic 410 stainless steels.
Resumo:
In this work, the stress relaxation behavior of PMMA/PS blends, with or without random copolymer addition, submitted to step shear strain experiments in the linear and nonlinear regime was studied. The effect of blend composition (ranging from 10 to 30 wt.% of dispersed phase), viscosity ratio (ranging from 0.1 to 7.5), and random copolymer addition (for concentrations up to 8 wt.% with respect to the dispersed phase) was evaluated and correlated to the evolution of the morphology of the blends. All blends presented three relaxation stages: a first fast relaxation which was attributed to the relaxation of the pure phases, a second one which was characterized by the presence of a plateau, and a third fast one. The relaxation was shown to be faster for less extended and smaller droplets and to be influenced by coalescence for blends with a dispersed phase concentration larger than 20 wt.%. The relaxation of the blend was strongly influenced by the matrix viscosity. The addition of random copolymer resulted in a slower relaxation of the droplets.