334 resultados para Generated Granule Cells
Resumo:
As previously shown, higher levels of NOTCH1 and increased NF-kappa B signaling is a distinctive feature of the more primitive umbilical cord blood (UCB) CD34+ hematopoietic stem cells (HSCs), as compared to bone marrow ( BM). Differences between BM and UCB cell composition also account for this finding. The CD133 marker defines a more primitive cell subset among CD34+ HSC with a proposed hemangioblast potential. To further evaluate the molecular basis related to the more primitive characteristics of UCB and CD133+ HSC, immunomagnetically purified human CD34+ and CD133+ cells from BM and UCB were used on gene expression microarrays studies. UCB CD34+ cells contained a significantly higher proportion of CD133+ cells than BM (70% and 40%, respectively). Cluster analysis showed that BM CD133+ cells grouped with the UCB cells ( CD133+ and CD34+) rather than to BM CD34+ cells. Compared with CD34+ cells, CD133+ had a higher expression of many transcription factors (TFs). Promoter analysis on all these TF genes revealed a significantly higher frequency ( than expected by chance) of NF-kappa B-binding sites (BS), including potentially novel NF-kappa B targets such as RUNX1, GATA3, and USF1. Selected transcripts of TF related to primitive hematopoiesis and self-renewal, such as RUNX1, GATA3, USF1, TAL1, HOXA9, HOXB4, NOTCH1, RELB, and NFKB2 were evaluated by real-time PCR and were all significantly positively correlated. Taken together, our data indicate the existence of an interconnected transcriptional network characterized by higher levels of NOTCH1, NF-kappa B, and other important TFs on more primitive HSC sets.
Resumo:
Background: In women with breast cancer submitted to neoadjuvant chemotherapy based in doxorubicin, tumor expression of groups of three genes (PRSS11, MTSS1, CLPTM1 and PRSS11, MTSS1, SMYD2) have classified them as responsive or resistant. We have investigated whether expression of these trios of genes could predict mammary carcinoma response in dogs and whether tumor slices, which maintain epithelial-mesenchymal interactions, could be used to evaluate drug response in vitro. Methods: Tumors from 38 dogs were sliced and cultured with or without doxorubicin 1 mu M for 24 h. Tumor cells were counted by two observers to establish a percentage variation in cell number, between slices. Based on these results, a reduction in cell number between treated and control samples >= 21.7%, arbitrarily classified samples, as drug responsive. Tumor expression of PRSS11, MTSS1, CLPTM1 and SMYD2, was evaluated by real time PCR. Relative expression results were then transformed to their natural logarithm values, which were spatially disposed according to the expression of trios of genes, comprising PRSS11, MTSS1, CLPTM1 and PRSS11, MTSS1, SMYD2. Fisher linear discrimination test was used to generate a separation plane between responsive and non-responsive tumors. Results: Culture of tumor slices for 24 h was feasible. Nine samples were considered responsive and 29 non-responsive to doxorubicin, considering the pre-established cut-off value of cell number reduction = 21.7%, between doxorubicin treated and control samples. Relative gene expression was evaluated and tumor samples were then spatially distributed according to the expression of the trios of genes: PRSS11, MTSS1, CLPTM1 and PRSS11, MTSS1, SMYD2. A separation plane was generated. However, no clear separation between responsive and non-responsive samples could be observed. Conclusion: Three-dimensional distribution of samples according to the expression of the trios of genes PRSS11, MTSS1, CLPTM1 and PRSS11, MTSS1, SMYD2 could not predict doxorubicin in vitro responsiveness. Short term culture of mammary gland cancer slices may be an interesting model to evaluate chemotherapy activity.
Resumo:
During fetal development, mesenchymal progenitor (MP) cells are co-localized in major hematopoietic territories, such as yolk sac (YS), bone marrow (BM), liver (LV), and others. Studies using mouse and human MP cells isolated from fetus have shown that these cells are very similar but not identical to adult mesenchymal stem cells (MSC). Their differentiation potential is usually restricted to production of highly committed osteogenic and chondrogenic precursors. Such properties of fetal MP cells can be very useful for tissue regeneration, when a great number of committed precursors are required. The objectives of this study were to isolate and characterize MP cells from canine YS, BM, and LV in early and late stages of fetal development. Gestational stage was identified, and cell culture conditions were evaluated for efficient isolation of canine MP cells. All canine fetal MP cells expressed vimentin, nestin, and CD44 proteins. Cytokeratin 18 expression was observed in BM-and LV-MP cells, and vascular endothelial (VE)-cadherin expression was observed only in YS-MP cells. A small number of MP cells (5%) from LV and YS expressed Oct3/4 protein. The differentiation potential of canine fetal MP cells varied significantly: YS- and BM-MP cells differentiated into bone and cartilage, whereas LV-MP cells differentiation was limited to osteogenic fate. None of the canine fetal MP cells were able to differentiate into adipose cells. Our data suggest that canine fetal MP cells are an appropriate in vitro model to study MP biology from hematopoietic territories and they are a source of committed osteogenic and chondrogenic precursors for regenerative medicine.
T cells, adhesion molecules and modulation of apoptosis in visceral leishmaniasis glomerulonephritis
Resumo:
Background: Immune complex deposition is the accepted mechanism of pathogenesis of VL glomerulopathy however other immune elements may participate. Further in the present study, no difference was seen between immunoglobulin and C3b deposit intensity in glomeruli between infected and non-infected dogs thus T cells, adhesion molecules and parameters of proliferation and apoptosis were analysed in dogs with naturally acquired VL from an endemic area. The dog is the most important domestic reservoir of the protozoa Leishmania (L.) chagasi that causes visceral leishmaniasis (VL). The similarity of VL manifestation in humans and dogs renders the study of canine VL nephropathy of interest with regard to human pathology. Methods: From 55 dogs with VL and 8 control non-infected dogs from an endemic area, kidney samples were analyzed by immunohistochemistry for immunoglobulin and C3b deposits, staining for CD4+ and CD8+ T cells, ICAM-1, P-selectin and quantified using morphometry. Besides proliferation marker Ki-67, apoptosis markers M30 and TUNEL staining, and related cytokines TNF-alpha, IL-1 alpha were searched and quantified. Results: We observed similar IgG, IgM and IgA and C3b deposit intensity in dogs with VL and non-infected control dogs. However we detected the Leishmania antigen in cells in glomeruli in 54, CD4+ T cells in the glomeruli of 44, and CD8+ T cells in 17 of a total of 55 dogs with VL. Leishmania antigen was absent and T cells were absent/scarse in eight non-infected control dogs. CD 4+ T cells predominate in proliferative patterns of glomerulonephritis, however the presence of CD4+ and CD8+ T cells were not different in intensity in different patterns of glomerulonephritis. The expression of ICAM-1 and P-selectin was significantly greater in the glomeruli of infected dogs than in control dogs. In all patterns of glomerulonephritis the expression of ICAM-1 ranged from minimum to moderately severe and P-selectin from absent to severe. In the control animals the expression of these molecules ranged from absent to medium intensity. It was not observed any correlation between severity of the disease and these markers. There was a correlation between the number of Leishmania antigen positive cells and CD4+ T cells, and between the number of CD4+ T cells and CD8+ T cells. In dogs presenting different histopathological patterns of glomerulonephritis, parameters of proliferation and apoptosis were studied. Ki-67, a proliferative marker, was not detected locally, but fewer apoptotic cells and lower TNF-alpha expression were seen in infected animals than in non-infected controls. Conclusion: Immunopathogenic mechanisms of VL glomerulonephritis are complex and data in the present study suggest no clear participation of immunoglobulin and C3b deposits in these dogs but the possible migration of CD4+ T cells into the glomeruli, participation of adhesion molecules, and diminished apoptosis of cells contributing to determine the proliferative pattern of glomerulonephritis in VL.
Resumo:
Cleft lip and palate (CLP), one of the most frequent congenital malformations, affects the alveolar bone in the great majority of the cases, and the reconstruction of this defect still represents a challenge in the rehabilitation of these patients. One of the current most promising strategy to achieve this goal is the use of bone marrow stem cells (BMSC); however, isolation of BMSC or iliac bone, which is still the mostly used graft in the surgical repair of these patients, confers site morbidity to the donor. Therefore, in order to identify a new alternative source of stem cells with osteogenic potential without conferring morbidity to the donor, we have used orbicular oris muscle (OOM) fragments, which are regularly discarded during surgery repair (cheiloplasty) of CLP patients. We obtained cells from OOM fragments of four unrelated CLP patients (CLPMDSC) using previously described preplating technique. These cells, through flow cytometry analysis, were mainly positively marked for five mesenchymal stem cell antigens (CD29, CD90, CD105, SH3, and SH4), while negative for hematopoietic cell markers, CD14, CD34, CD45, and CD117, and for endothelial cell marker, CD31. After induction under appropriate cell culture conditions, these cells were capable to undergo chondrogenic, adipogenic, osteogenic, and skeletal muscle cell differentiation, as evidenced by immunohistochemistry. We also demonstrated that these cells together with a collagen membrane lead to bone tissue reconstruction in a critical-size cranial defects previously induced in non-immunocompromised rats. The presence of human DNA in the new bone was confirmed by PCR with human-specific primers and immunohistochemistry with human nuclei antibodies. In conclusion, we showed that cells from OOM have phenotypic and behavior characteristics similar to other adult stem cells, both in vitro and in vivo. Our findings suggest that these cells represent a promising source of stem cells for alveolar bone grafting treatment, particularly in young CLP patients.
Resumo:
Objective: The aims of the present study were to investigate the effect of low-intensity laser irradiation on the total number of mast cells as well as the percentage of degranulation in human gingiva. Blood vessel dilation was also evaluated. Background Data: It has been proposed that low-intensity laser irradiation can ameliorate pain, swelling, and inflammation. In periodontal tissue, mast cells may influence either the destructive events or the defense mechanism against periodontal disease via secretion of cytokines and through cellular migration to improve the healing process. Mast cells play an important role in the inflammatory process. Methods: Twenty patients with gingival enlargement indicated for gingivectomy were selected. Gingival fragments were obtained from each patient and divided into three different groups before surgery. One fragment was removed without any irradiation. The two others were submitted to punctual irradiation with an energy density of 8 J/cm(2) at an output power of 50 mW at 36 Hz for 36 sec before gingivectomy. Nondegranulated and degranulated mast cells were counted in five areas of the gingival fragment connective tissue. Major and minor diameters of the blood vessels were also measured. Results: Both red and infrared radiation promoted a significant increase in mast cell degranulation compared to controls; however, no statistically significant differences (p > 0.05) were observed between the irradiated groups. No significant differences among the groups were observed regarding blood vessel size. Conclusion: The results suggests that red and infrared wavelengths promote mast cell degranulation in human gingival tissue, although no dilation of blood vessels was observed. The effects of premature degranulation of mast cells in human tissue and the laser radiation protocol applied in this study encourage further investigations to extend these results into clinical practice.
Resumo:
It is well known that cancer cells secrete angiogenic factors to recruit and sustain tumor vascular networks. However, little is known about the effect of endothelial cell-secreted factors on the phenotype and behavior of tumor cells. The hypothesis underlying this study is that endothelial cells initiate signaling pathways that enhance tumor cell survival and migration. Here, we observed that soluble mediators from primary human dermal microvascular endothelial cells induce phosphorylation of signal transducer and activator of transcription 3 (STAT3), Akt, and extracellular signal-regulated kinase (ERK) in a panel of head and neck squamous cell carcinoma (HNSCC) cells (OSCC-3, UM-SCC-1, UM-SCC-17B, UM-SCC-74A). Gene expression analysis demonstrated that interleukin-6 (IL-6), interleukin-8 (CXCL8), and epidermal growth factor (EGF) are upregulated in endothelial cells cocultured with HNSCC. Blockade of endothelial cell-derived IL-6, CXCL8, or EGF by gene silencing or neutralizing antibodies inhibited phosphorylation of STAT3, Akt, and ERK in tumor cells, respectively. Notably, activation of STAT3, Akt, and ERK by endothelial cells enhanced migration and inhibited anoikis of tumor cells. We have previously demonstrated that Bcl-2 is upregulated in tumor microvessels in patients with HNSCC. Here, we observed that Bcl-2 signaling induces expression of IL-6, CXCL8, and EGF, providing a mechanism for the upregulation of these cytokines in tumor-associated endothelial cells. This study expands the contribution of endothelial cells to the pathobiology of tumor cells. It unveils a new mechanism in which endothelial cells function as initiators of molecular crosstalks that enhance survival and migration of tumor cells.
Resumo:
Background: The thymus is a central lymphoid organ, in which bone marrow-derived T cell precursors undergo a complex process of maturation. Developing thymocytes interact with thymic microenvironment in a defined spatial order. A component of thymic microenvironment, the thymic epithelial cells, is crucial for the maturation of T-lymphocytes through cell-cell contact, cell matrix interactions and secretory of cytokines/chemokines. There is evidence that extracellular matrix molecules play a fundamental role in guiding differentiating thymocytes in both cortical and medullary regions of the thymic lobules. The interaction between the integrin alpha 5 beta 1 (CD49e/CD29; VLA-5) and fibronectin is relevant for thymocyte adhesion and migration within the thymic tissue. Our previous results have shown that adhesion of thymocytes to cultured TEC line is enhanced in the presence of fibronectin, and can be blocked with anti-VLA-5 antibody. Results: Herein, we studied the role of CD49e expressed by the human thymic epithelium. For this purpose we knocked down the CD49e by means of RNA interference. This procedure resulted in the modulation of more than 100 genes, some of them coding for other proteins also involved in adhesion of thymocytes; others related to signaling pathways triggered after integrin activation, or even involved in the control of F-actin stress fiber formation. Functionally, we demonstrated that disruption of VLA-5 in human TEC by CD49e-siRNA-induced gene knockdown decreased the ability of TEC to promote thymocyte adhesion. Such a decrease comprised all CD4/CD8-defined thymocyte subsets. Conclusion: Conceptually, our findings unravel the complexity of gene regulation, as regards key genes involved in the heterocellular cell adhesion between developing thymocytes and the major component of the thymic microenvironment, an interaction that is a mandatory event for proper intrathymic T cell differentiation.
Resumo:
The canine model provides a large animal system to evaluate many treatment modalities using stem cells (SCs). However, only bone marrow ( BM) protocols have been widely used in dogs for preclinical approaches. BM donation consists of an invasive procedure and the number and differentiation potential of its mesenchymal stem cells (MSCs) decline with age. More recently, umbilical cord was introduced as an alternative source to BM since it is obtained from a sample that is routinely discarded. Here, we describe the isolation of MSCs from canine umbilical cord vein (cUCV). These cells can be obtained from every cord received and grow successfully in culture. Their multipotent plasticity was demonstrated by their capacity to differentiate in adipocytic, chondrocytic, and osteocytic lineages. Furthermore, our results open possibilities to use cUCV cells in preclinical trials for many well-characterized canine model conditions homologs to human diseases.
Resumo:
The relationship between the level of cell confluence near the plateau phase of growth and blastocyst yield following somatic cell cloning is not well understood. We examined the effect of distinct cell culture confluence levels on in vitro development of cloned bovine embryos. In vitro-matured bovine oocytes were manually bisected and selected by DNA staining. One or two enucleated hemi-cytoplasts were paired and fused with an adult skin somatic cell. Cultured skin cells from an adult Nellore cow harvested at three distinct culture confluence levels (70-80, 80-90, and > 95%) were used for construction of embryos and hemi-embryos. After activation, structures were cultured in vitro as one embryo (1 x 100%) or as aggregates of two hemi-embryos (2 x 50%) per microwell. Fusion, cleavage and blastocyst rates were compared using the chi(2) test. The fusion rate for hemi-embryos (51.4%) was lower than for embryos (67.6%), with no influence of degree of cell confluence. However, blastocyst rates improved linearly (7.0, 17.5, and 29.4%) with increases in cell confluence. We conclude that degree of cell culture confluence significantly influences subsequent embryo development; use of a cell population in high confluence (> 90%) for nuclear transfer significantly improved blastocyst yield after cloning.
Resumo:
Cell cycle synchronization by serum starvation (SS) induces apoptosis in somatic cells. This side effect of SS is hypothesized to negatively affect the outcome of somatic cell nuclear transfer (SCNT). We determined whether apoptotic fibroblasts affect SCNT yields. Serum-starved, adult, bovine fibroblasts were stained with annexin V-FITC/propidium iodide to allow apoptosis detection by flow cytometry. Positive and negative cells sorted by fluorescence activated cell sorting (FACS) and an unsorted control group were used as nuclear donors for SCNT. Reconstructed embryos were cultured in vitro and transferred to synchronized recipients. Apoptosis had no effect on fusion and cleavage rates; however, it resulted in reductions in blastocyst production and quality measured by apoptotic index. However, reconstructed embryos with apoptotic cells resulted in pregnancy rates similar to that of the control on day 30, and generated one live female calf. In conclusion, we showed that apoptotic cells present in serum-starved cultures negatively affect embryo production after SCNT without compromising full-term development. Further studies will evaluate the ability of the oocyte to reprogram cells in specific phases of apoptosis.
Resumo:
Papillomaviruses have been reported to be very difficult to grow in cell culture. Also, there are no descriptions of cell cultures from lesions of bovine cutaneous papillomatosis, with identification of different bovine papilloma virus (BPV) DNA sequences. In the present report, we describe primary cell cultures from samples of cutaneous lesions (warts). We investigated the simultaneous presence of different BPV DNA sequences, comparing the original lesion to different passages of the cell cultures and to peripheral blood. BPV 1, 2 and 4 DNA sequences were found in lesion samples, and respective cell cultures and peripheral blood, supporting our previous hypothesis of the possible activity of these sequences in different samples and now also showing how they can be maintained in different passages of cell cultures.
Resumo:
Genetic models of sex and caste determination in eusocial stingless bees suggest specific patterns of male, worker and gyne cell distribution in the brood comb. Conflict between queen and laying workers over male parentage and center-periphery gradients of conditions, such as food and temperature, could also contribute to non-random spatial configuration. We converted the positions of the hexagonal cells in a brood comb to Cartesian coordinates, labeled by sex or caste of the individuals inside. To detect and locate clustered patterns, the mapped brood combs were evaluated by indexes of dispersion (MMC, mean distance of cells of a given category from their centroid) and eccentricity (DMB, distance between this centroid and the overall brood comb centroid) that we developed. After randomizing the labels and recalculating the indexes, we calculated probabilities that the original values had been generated by chance. We created sets of binary brood combs in which males were aggregated, regularly or randomly distributed among females. These stylized maps were used to describe the power of MMC and DMB, and they were applied to evaluate the male distribution in the sampled Nannotrigona testaceicornis brood combs. MMC was very sensitive to slight deviations from a perfectly rounded clump; DMB detected any asymmetry in the location of these compact to fuzzy clusters. Six of the 82 brood combs of N. testaceicornis that we analyzed had more than nine males, distributed according to variations in spatial patterns, as indicated by the two indexes.
Resumo:
Background: Endothelial cells are of great interest for cell therapy and tissue engineering. Understanding the heterogeneity among cell lines originating from different sources and culture protocols may allow more standardized material to be obtained. In a recent paper, we showed that adrenalectomy interferes with the expression of membrane adhesion molecules on endothelial cells maintained in culture for 16 to 18 days. In addition, the pineal hormone, melatonin, reduces the adhesion of neutrophils to post-capillary veins in rats. Here, we evaluated whether the reactivity of cultured endothelial cells maintained for more than two weeks in culture is inversely correlated to plasma melatonin concentration. Methodology/Principal Findings: The nocturnal levels of melatonin were manipulated by treating rats with LPS. Nocturnal plasma melatonin, significantly reduced two hours after LPS treatment, returned to control levels after six hours. Endothelial cells obtained from animals that had lower nocturnal melatonin levels significantly express enhanced adhesion molecules and iNOS, and have more leukocytes adhered than cells from animals that had normal nocturnal levels of melatonin (naive or injected with vehicle). Endothelial cells from animals sacrificed two hours after a simultaneous injection of LPS and melatonin present similar phenotype and function than those obtained fromcontrol animals. Analyzing together all the data, taking into account the plasma melatonin concentration versus the expression of adhesion molecules or iNOS we detected a significant inverse correlation. Conclusions/Significance: Our data strongly suggest that the plasma melatonin level primes endothelial cells ""in vivo,"" indicating that the state of the donor animal is translated to cells in culture and therefore, should be considered for establishing cell banks in ideal conditions.
Resumo:
Background: The possibility of using stem cells for regenerative medicine has opened a new field of investigation. The search for sources to obtain multipotent stem cells from discarded tissues or through non-invasive procedures is of great interest. It has been shown that mesenchymal stem cells (MSCs) obtained from umbilical cords, dental pulp and adipose tissue, which are all biological discards, are able to differentiate into muscle, fat, bone and cartilage cell lineages. The aim of this study was to isolate, expand, characterize and assess the differentiation potential of MSCs from human fallopian tubes (hFTs). Methods: Lineages of hFTs were expanded, had their karyotype analyzed, were characterized by flow cytometry and underwent in vitro adipogenic, chondrogenic, osteogenic, and myogenic differentiation. Results: Here we show for the first time that hFTs, which are discarded after some gynecological procedures, are a rich additional source of MSCs, which we designated as human tube MSCs (htMSCs). Conclusion: Human tube MSCs can be easily isolated, expanded in vitro, present a mesenchymal profile and are able to differentiate into muscle, fat, cartilage and bone in vitro.