100 resultados para Functional analysis.
Resumo:
Intense lifestyle modifications can change the high-density lipoprotein (HDL) cholesterol concentration. The aim of the present study was to analyze the early effects of short-term exercise training, without any specific diet, on the HDL cholesterol plasma levels and HDL functional characteristics in patients with the metabolic syndrome (MS). We studied 30 sedentary subjects, 20 with and 10 without the MS. The patients with the MS underwent moderate intensity exercise training for 3 months on bicycle ergometers. Blood was sampled before and after training for biochemical analysis, paraoxonase-1 activity, and HDL subfraction composition and antioxidative capacity. Lipid transfer to HDL was assayed in vitro using a labeled nanoemulsion as the lipid donor. At baseline, the MS group had greater triglyceride levels and a lower HDL cholesterol concentration and lower paraoxonase-1 activity than did the controls. Training decreased the plasma triglycerides but did not change the low-density lipoprotein or HDL cholesterol levels. Nonetheless, exercise training increased the HDL subfractions` antioxidative capacity and paraoxonase-1 activity. After training, the MS group had compositional changes in the smallest HDL subfractions associated with increased free cholesterol and cholesterol ester transfers to HDL, reaching normal values. In conclusion, the present investigation has added relevant information about the dissociation between the quantitative and qualitative aspects of HDL after short-term exercise training without any specific diet in those with the MS, highlighting the importance of evaluating the functional aspects of the lipoproteins, in addition to their plasma levels. (C) 2011 Elsevier Inc. All rights reserved. (Am J Cardiol 2011;107:1168-1172)
Resumo:
Many eukaryotic proteins are posttranslationally modified by the esterification of cysteine thiols to long-chain fatty acids. This modification, protein palmitoylation, is catalyzed by a large family of palmitoyl acyltransferases that share an Asp-His-His-Cys Cys-rich domain but differ in their subcellular localizations and substrate specificities. In Trypanosoma brucei, the flagellated protozoan parasite that causes African sleeping sickness, protein palmitoylation has been observed for a few proteins, but the extent and consequences of this modification are largely unknown. We undertook the present study to investigate T. brucei protein palmitoylation at both the enzyme and substrate levels. Treatment of parasites with an inhibitor of total protein palmitoylation caused potent growth inhibition, yet there was no effect on growth by the separate, selective inhibition of each of the 12 individual T. brucei palmitoyl acyltransferases. This suggested either that T. brucei evolved functional redundancy for the palmitoylation of essential palmitoyl proteins or that palmitoylation of some proteins is catalyzed by a noncanonical transferase. To identify the palmitoylated proteins in T. brucei, we performed acyl biotin exchange chemistry on parasite lysates, followed by streptavidin chromatography, two-dimensional liquid chromatography-tandem mass spectrometry protein identification, and QSpec statistical analysis. A total of 124 palmitoylated proteins were identified, with an estimated false discovery rate of 1.0%. This palmitoyl proteome includes all of the known palmitoyl proteins in procyclic-stage T. brucei as well as several proteins whose homologues are palmitoylated in other organisms. Their sequences demonstrate the variety of substrate motifs that support palmitoylation, and their identities illustrate the range of cellular processes affected by palmitoylation in these important pathogens.
Resumo:
One of the challenges in screening for dementia in developing countries is related to performance differences due to educational and cultural factors. This study evaluated the accuracy of single screening tests as well as combined protocols including the Mini-Mental State Examination (MMSE), Verbal Fluency animal category (VF), Clock Drawing test (CDT), and Pfeffer Functional Activities Questionnaire (PFAQ) to discriminate illiterate elderly with and without Alzheimer`s disease (AD) in a clinical sample. Cross-sectional study with 66 illiterate outpatients diagnosed with mild and moderate AD and 40 illiterate normal controls. Diagnosis of AD was based on NINCDS-ADRDA. All patients were submitted to a diagnostic protocol including a clinical interview based on the CAMDEX sections. ROC curves area analyses were carried out to compare sensitivity and specificity for the cognitive tests to differentiate the two groups (each test separately and in two by two combinations). Scores for all cognitive (MMSE, CDT, VF) and functional assessments (PFAQ) were significantly different between the two groups (p < 0.001). The best screening instruments for this sample of illiterate elderly were the MMSE and the PFAQ. The cut-off scores for the MMSE, VF, CDT, and PFAQ were 17.5, 7.5, 2.5, and 11.5, respectively. The most sensitive combination came from the MMSE and PFAQ (94.1%), and the best specificity was observed with the combination of the MMSE and CDT (89%). Illiterate patients can be successfully screened for AD using well-known screening instruments, especially in combined protocols.
Resumo:
Context: Abnormal FGFR4 expression has been detected in pituitary tumors, especially in larger and invasive adenomas. In addition, the FGFR4 functional polymorphism G388R has been associated with poor outcome in several human malignancies. Then, we hypothesized that FGFR4 expression and genotype could be markers of adverse outcome of Cushing`s disease after transsphenoidal surgery. Objectives: The objective was to investigate whether there is an association between the postoperative outcome of Cushing`s disease (remission/recurrence) and the FGFR4 G388R genotype or the FGFR4 expression in corticotrophinomas. Design and Patients: Clinical, hormonal, and pathological data of 76 patients who underwent the first transsphenoidal surgery were retrospectively reviewed. All patients were genotyped for G388R polymorphism. FGFR4 expression was assessed by real-time PCR in 18 corticotrophinomas. Main Outcome Measures: The outcome measures included the FGFR4 G388R genotype and FGFR4 expression in postoperative remission and recurrence of Cushing`s disease. Results: Homozygosis for FGFR4 glycine (Gly(388)) allele was associated with reduced disease-free survival, in the univariate analysis (hazard ratio of 6.91; 95% confidence interval of 1.14-11.26; P = 0.028). Male gender (P = 0.036), lack of pathology confirmation (P = 0.009), and cortisol levels more than 2 mu g/dl in the early postoperative period (P < 0.001) were also significant predictors of Cushing`s disease recurrence in the univariate analysis. FGFR4 overexpression was found in 44% of the corticotrophinomas, and it was associated with lower postoperative remission rate (P = 0.009). Conclusions: Our data suggest that homozygosis for FGFR4 Gly(388) allele and FGFR4 overexpression are associated with higher frequency of postoperative recurrence and persistence of Cushing`s disease, respectively. (J Clin Endocrinol Metab 95: E271-E279, 2010)
Resumo:
Background. Heart transplantation (OHT) has traditionally been contraindicated in the presence of severe pulmonary hypertension (PH), as detected by right heart catheterization. Noninvasive methods are still not reliably accurate to make this evaluation. Objectives. Determine the efficacy of echo Doppler analysis for the diagnosis of severe PH. Methods. One hundred thirty patients (mean age = 42 +/- 15 years, 82 men) showed severe left ventricular dysfunction (mean ejection fraction = 29 +/- 12%; functional class III-IV). We excluded patients with atrial fibrillation, heart failure secondary to congenital disease, and valvulopathy. The pulmonary parameters defined as severe PH were: systolic pulmonary artery pressure (sPAP) >= 60 mm Hg; a mean transpulmonary gradient >= 15; or pulmonary vascular resistance >= 5 Wood units. Patients underwent a right heart catheterization using a Swan-Ganz catheter to measure hemodynamic parameters and to noninvasively estimate right-sided pressures from spectral Doppler recordings of tricuspid regurgitation velocity (right ventricular systolic pressure [RVsP]). A Pearson correlation of sPAP was obtained with RVsP by; the sensitivity of RVsP for the diagnosis of PH was determined by a receiver operating characteristic (ROC) curve. Results. A good correlation between sPAP and RVsP was obtained by Pearson correlation analysis (r = 0.64; 95% confidence interval [CI] 0.50-0.75; P < .001). The ROC curve analysis showed a sensitivity of 100%, a specificity of 37.2%, (95% CI 0.69-0.83, P < .0001) of a RVsP < 45 mm Hg (cutoff) on the exclusion of severe PH. Conclusions. The cutoff of RVsP < 45 mm Hg, on noninvasive echo Doppler evaluation of PH is an efficient method to replace invasive heart catheterization in OHT candidates.
Resumo:
The fruit of banana undergoes several important physico-chemical changes during ripening. Analysis of gene expression would permit identification of important genes and regulatory elements involved in this process. Therefore, transcript profiling of preclimacteric and climacteric fruit was performed using differential display and Suppression subtractive hybridization. Our analyses resulted in the isolation of 12 differentially expressed cDNAs, which were confirmed by dot-blots and northern blots. Among the sequences identified were sequences homologous to plant aquaporins, adenine nucleotide translocator, immunophilin, legumin-like proteins, deoxyguanosine kinase and omega-3 fatty acid desaturase. Some of these cDNAs correspond to newly isolated genes involved in changes related to the respiratory climacteric, or stress-defense responses. Functional characterization of ripening-associated genes could provide information useful in controlling biochemical pathways that would have an impact on banana quality and shelf life. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The Sciatic Functional Index (SFI) is a quite useful tool for the evaluation of functional recovery of the sciatic nerve of rats in a number of experimental injuries and treatments. Although it is an objective method, it depends on the examiner`s ability to adequately recognize and mark the previously established footprint key points, which is an entirely subjective step, thus potentially interfering with the calculations according to the mathematical formulae proposed by different authors. Thus, an interpersonal evaluation of the reproducibility of an SFI computer-aided method was carried out here to study data variability. A severe crush injury was produced on a 5 mm-long segment of the right sciatic nerve of 20 Wistar rats (a 5000 g load directly applied for 10 min) and the SH was measured by four different examiners (an experienced one and three newcomers) preoperatively and at weekly intervals from the 1st to the 8th postoperative week. Three measurements were made for each print and the average was calculated and used for statistical analysis. The results showed that interpersonal correlation was high (0.82) in the 3rd, 4th, 5th, 7th and 8th weeks, with an unexpected but significant (p < 0.01) drop in the 6th week. There was virtually no interpersonal correlation (correlation index close to 0) on the 1st and 2nd weeks, a period during which the variability between animals and examiners (p =0.24 and 0.32, respectively) was similar, certainly due to a poor definition of the footprints. The authors conclude that the SFI method studied here is only reliable from the 3rd week on after a severe lesion of the sciatic nerve of rats. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The cytoplasmic and nuclear protein Ki- 1 / 57 was first identified in malignant cells from Hodgkin`s lymphoma. Despite studies showing its phosphorylation, arginine methylation, and interaction with several regulatory proteins, the functional role of Ki- 1 / 57 in human cells remains to be determined. Here, we investigated the relationship of Ki- 1 / 57 with RNA functions. Through immunoprecipitation assays, we verified the association of Ki- 1 / 57 with the endogenous splicing proteins hnRNPQ and SFRS9 in HeLa cell extracts. We also found that recombinant Ki- 1 / 57 was able to bind to a poly- U RNA probe in electrophoretic mobility shift assays. In a classic splicing test, we showed that Ki- 1 / 57 can modify the splicing site selection of the adenoviral E1A minigene in a dose- dependent manner. Further confocal and. uorescence microscopy analysis revealed the localization of enhanced green. uorescent protein - Ki- 1 / 57 to nuclear bodies involved in RNA processing and or small nuclear ribonucleoprotein assembly, depending on the cellular methylation status and its N- terminal region. In summary, our findings suggest that Ki- 1 / 57 is probably involved in cellular events related to RNA functions, such as pre- mRNA splicing.
Resumo:
A shift in the activation of pulmonary macrophages characterized by an increase of IL-1, INF-alpha and IL-6 production has been induced in mice infected with Paracoccidioides brasiliensis. It is still unclear whether a functional shift in the resident alveolar macrophage population would be responsible for these observations due to the expression of cell surface molecules. We investigated pulmonary macrophages by flow cytometry from mice treated with P. brasiliensis derivatives by intratracheal route. In vivo labeling with the dye PKH26GL was applied to characterize newly recruited pulmonary macrophages from the bloodstream. Pulmonary macrophages from mice inflamed with P. brasiliensis derivatives showed a high expression of the surface antigens CD11b/CD18 and CD23 among several cellular markers. The expression of these markers indicated a pattern of activation of a subpopulation characterized as CD11b(+) or CD23(+), which was modulated in vitro by IFN-gamma and IL-4. Analysis of monocytes labelled with PKH26GL demonstrated that CD11b(+) cells did infiltrate the lung exhibiting a proinflammatoni pattern of activation, whereas CD23(+) cells were considered to be resident in the lung. These findings may contribute to better understand the pathology of lung inflammation caused by P. brasiliensis infection. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
High-voltage electric injuries have many manifestations, and an important complication is the damage of the central/peripheral nervous system. The purpose of this work was to assess the upper limb dysfunction in patients injured by high-voltage current. The evaluation consisted of analysis of patients` records, cutaneous-sensibility threshold, handgrip and pinch strength and a specific questionnaire about upper limb dysfunctions (DASH) in 18 subjects. All subjects were men; the average age at the time of the injury was 38 years. Of these, 72% changed job/retired after the injury. The current entrance was the hand in 94% and grounding in the lower limb in 78%. The average burned surface area (BSA) was 8.6%. The handgrip strength of the injured limb was reduced (p < 0.05) and so also that of the three pinch types. The relationship between the handgrip strength and the DASH was statistically significant (p < 0.001) as well as the relationship between the three pinch types (p <= 0.02) to the injured limb. The ability to perceive cutaneous touch/pressure was decreased in the burnt hand, principally in the median nerve area. These data indicate a reduction of the hand muscular strength and sensibility, reducing the function of the upper limb in patients who received high-voltage electrical shock. (C) 2008 Elsevier Ltd and ISBI. All rights reserved.
Resumo:
The prognosis of glioblastomas is still extremely poor and the discovery of novel molecular therapeutic targets can be important to optimize treatment strategies. Gene expression analyses comparing normal and neoplastic tissues have been used to identify genes associated with tumorigenesis and potential therapeutic targets. We have used this approach to identify differentially expressed genes between primary glioblastomas and non-neoplastic brain tissues. We selected 20 overexpressed genes related to cell cycle, cellular movement and growth, proliferation and cell-to-cell signaling and analyzed their expression levels by real time quantitative PCR in cDNA obtained from microdissected fresh tumor tissue from 20 patients with primary glioblastomas and from 10 samples of non-neoplastic white matter tissue. The gene expression levels were significantly higher in glioblastomas than in non-neoplastic white matter in 18 out of 20 genes analyzed: P < 0.00001 for CDKN2C, CKS2, EEF1A1, EMP3, PDPN, BNIP2, CA12, CD34, CDC42EP4, PPIE, SNAI2, GDF15 and MMP23b; and NFIA (P: 0.0001), GPS1 (P: 0.0003), LAMA1 (P: 0.002), STIM1 (P: 0.006), and TASP1 (P: 0.01). Five of these genes are located in contiguous loci at 1p31-36 and 2 at 17q24-25 and 8 of them encode surface membrane proteins. PDPN and CD34 protein expression were evaluated by immunohistochemistry and they showed concordance with the PCR results. The present results indicate the presence of 18 overexpressed genes in human primary glioblastomas that may play a significant role in the pathogenesis of these tumors and that deserve further functional investigation as attractive candidates for new therapeutic targets.
Resumo:
Objective. The relationship of multipotent mesenchymal stromal cells (MSC) with pericytes and fibroblasts has not been established thus far, although they share many markers of primitive marrow stromal cells and the osteogenic, adipogenic, and chondrogenic differentiation potentials. Materials and Methods. We compared MSCs from adult or fetal tissues, MSC differentiated in vitro, fibroblasts and cultures of retinal pericytes obtained either by separation with anti-CD146 or adhesion. The characterizations included morphological, immunophenotypic, gene-expression profile, and differentiation potential. Results. Osteogenic, adipocytic, and chondrocytic differentiation was demonstrated for MSC, retinal perivascular cells, and fibroblasts. Cell morphology and the phenotypes defined by 22 markers were very similar. Analysis of the global gene expression obtained by serial analysis of gene expression for 17 libraries and by reverse transcription polymerase chain reaction of 39 selected genes from 31 different cell cultures, revealed similarities among MSC, retinal perivascular cells, and hepatic stellate cells. Despite this overall similarity, there was a heterogeneous expression of genes related to angiogenesis, in MSC derived from veins, artery, perivascular cells, and fibroblasts. Evaluation of typical pericyte and MSC transcripts, such as NG2, CD146, CD271, and CD140B on CD146 selected perivascular cells and MSC by real-time polymerase chain reaction confirm the relationship between these two cell types. Furthermore, the inverse correlation between fibroblast-specific protein-1 and CD146 transcripts observed on pericytes, MSC, and fibroblasts highlight their potential use as markers of this differentiation pathway. Conclusion. Our results indicate that human MSC and pericytes are similar cells located in the wall of the vasculature, where they function as cell sources for repair and tissue maintenance, whereas fibroblasts are more differentiated cells with more restricted differentiation potential. (C) 2008 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc.
Resumo:
The present study investigated morpho-functional relations of the aortic depressor nerve (ADN) 5, 15 and 120 days after the onset of streptozotocin-induced diabetes in rats. Time control animals received vehicle. Under pentobarbital anesthesia, ADN activity was recorded simultaneously with arterial pressure. After the recordings, nerves were prepared for light microscopy study and morphometry. ADN function was accessed by means of pressure-nerve activity curve (fitted by sigmoidal regression) and cross-spectral analysis between mean arterial pressure (MAP) and ADN activity. The relation between morphological (myelinated fibers number and density, total myelin area, total fiber area and percentage of occupancy) and functional (gain, signal/noise relation, frequency) parameters were accessed by linear regression analysis and correlation coefficient calculations. Functional parameters obtained by means of the sigmoidal regression curve as well as by cross-spectral analysis were similar in diabetic and control rats. Morphometric parameters of the ADN were similar between groups 5 days after the onset of diabetes. Average myelin area and myelinated fiber area were significantly smaller on diabetic rats 15 and 120 days after the onset of diabetes, being the myelinated fiber and respective axons area and diameter also smaller on 120 days group. Nevertheless, G ratio (ratio between axon and fiber diameter) was nearly 0.6 and not different between groups or experimental times. No significant relationship between morphological and functional parameters was detected in all experimental groups. The present study suggests that ADN diabetic neuropathy was time-dependent, with damage to myelinated fibers to be the primary event, not evidenced by physiological methods. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
In social anxiety disorder (SAD), impairments in limbic/paralimbic structures are associated with emotional dysregulation and inhibition of the medial prefrontal cortex (MPFq. Little is known, however, about alterations in limbic and frontal regions associated with the integrated morphometric, functional, and structural architecture of SAD. Whether altered gray matter volume is associated with altered functional and structural connectivity in SAD. Three techniques were used with 18 SAD patients and 18 healthy controls: voxel-based morphometry; resting-state functional connectivity analysis; and diffusion tensor imaging tractography. SAD patients exhibited significantly decreased gray matter volumes in the right posterior inferior temporal gyrus (ITG) and right parahippocampal/hippocampal gyrus (PHG/HIP). Gray matter volumes in these two regions negatively correlated with the fear factor of the Liebowitz Social Anxiety Scale. In addition, we found increased functional connectivity in SAD patients between the right posterior ITG and the left inferior occipital gyrus, and between the right PHF/HIP and left middle temporal gyms. SAD patients had increased right MPFC volume, along with enhanced structural connectivity in the genu of the corpus callosum. Reduced limbic/paralimbic volume, together with increased resting-state functional connectivity, suggests the existence of a compensatory mechanism in SAD. Increased MPFC volume, consonant with enhanced structural connectivity, suggests a long-time overgeneralization of structural connectivity and a role of this area in the mediation of clinical severity. Overall, our results may provide a valuable basis for future studies combining morphometric, functional and anatomical data in the search for a comprehensive understanding of the neural circuitry underlying SAD. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Functional brain imaging techniques such as functional MRI (fMRI) that allow the in vivo investigation of the human brain have been exponentially employed to address the neurophysiological substrates of emotional processing. Despite the growing number of fMRI studies in the field, when taken separately these individual imaging studies demonstrate contrasting findings and variable pictures, and are unable to definitively characterize the neural networks underlying each specific emotional condition. Different imaging packages, as well as the statistical approaches for image processing and analysis, probably have a detrimental role by increasing the heterogeneity of findings. In particular, it is unclear to what extent the observed neurofunctional response of the brain cortex during emotional processing depends on the fMRI package used in the analysis. In this pilot study, we performed a double analysis of an fMRI dataset using emotional faces. The Statistical Parametric Mapping (SPM) version 2.6 (Wellcome Department of Cognitive Neurology, London, UK) and the XBAM 3.4 (Brain Imaging Analysis Unit, Institute of Psychiatry, Kings College London, UK) programs, which use parametric and non-parametric analysis, respectively, were used to assess our results. Both packages revealed that processing of emotional faces was associated with an increased activation in the brain`s visual areas (occipital, fusiform and lingual gyri), in the cerebellum, in the parietal cortex, in the cingulate cortex (anterior and posterior cingulate), and in the dorsolateral and ventrolateral prefrontal cortex. However, blood oxygenation level-dependent (BOLD) response in the temporal regions, insula and putamen was evident in the XBAM analysis but not in the SPM analysis. Overall, SPM and XBAM analyses revealed comparable whole-group brain responses. Further Studies are needed to explore the between-group compatibility of the different imaging packages in other cognitive and emotional processing domains. (C) 2009 Elsevier Ltd. All rights reserved.