143 resultados para Discrete boundary value problems
Resumo:
In this paper we analyze the behavior of the Laplace operator with Neumann boundary conditions in a thin domain of the type R(epsilon) = {(x(1), x(2)) is an element of R(2) vertical bar x(1) is an element of (0, 1), 0 < x(2) < epsilon G(x(1), x(1)/epsilon)} where the function G(x, y) is periodic in y of period L. Observe that the upper boundary of the thin domain presents a highly oscillatory behavior and, moreover, the height of the thin domain, the amplitude and period of the oscillations are all of the same order, given by the small parameter epsilon. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
Here we present a system of coupled phase oscillators with nearest neighbors coupling, which we study for different boundary conditions. We concentrate at the transition to the total synchronization. We are able to develop exact solutions for the value of the coupling parameter when the system becomes completely synchronized, for the case of periodic boundary conditions as well as for a chain with fixed ends. We compare the results with those calculated numerically.
Resumo:
Objectives: Main Objective: to identify ethical problems in primary care according to nurses` and doctors` perceptions. Secondary Objective: to know ethical issues of patient-professional relationships in primary care. Design: Synthesis to integrate and reinterpret primary results of qualitative studies. Setting: Primary healthcare centers, Sao Paulo, SP, Brazil. Participants and/or context: Incidental sample of 34 nurses and 36 medical doctors working in primary healthcare centers selected by convenience. Methods: Individual, semi-structured interviews to identity situations considered as sources of ethical problems. The sample is socially representative of primary care health centers and professionals. Data collection assured discourse saturation. Hermeneutic-dialectical discourse analysis was used to study the results. Results: Patient-professional relationships and team work were the main sources of ethical problems. The most important problems were patient information, privacy, confidentiality, interpersonal relationship, linkage and patient autonomy. These issues reflect the recent changes in clinical relation ships and show the peculiarities of primary care with its continuous care which lasts a long time. Healthcare involves multiprofessional team work in the midst of the patient claims for autonomy. Good care of patients needs requires a relationship based on communication and cooperation, and includes feelings and values, with communication skills. Conclusions: Ethical problems in primary care are common situations. For quality and humane primary care the relationship should consist of dialogue, trust and cooperation. (C) 2009 Elsevier Espana, S.L. All rights reserved.
Resumo:
Tropical countries face special specific problems in implementing sustainable forest management (SFM). In many countries, questions are raised on whether tropical forests should be publicly, commonly or privately owned and managed in order to enhance sustainability. Other debates also focus on whether small-scale enterprises are better positioned than large-scale industrial concessions to reduce poverty and attain sustainable management. In countries where large tracts of forest are state-owned, concessions are viewed as a means of delivering services of public and collective interest through an association of private investment and public regulation. However, the success of an industrial concession model in countries with large forest resource endowment to achieve multiple goals such as sustainable forest management and local/regional development depends on two critical assumptions. First, forest functions and services should be managed and maintained as public goods. In many cases, additional uses - and corresponding rights - can take place alongside logging activities. Industrial concessions can be more efficient than other tenure models (such as community-based forest management and small-scale enterprises) in achieving SFM, add value to raw material and comply with growing environmental norms. This is especially the case in market-remote areas with low population density and poor infrastructure. Secondly, to achieve these different outcomes, any concession system needs to be monitored and regulated, especially in contexts dominated by asymmetrical information between regulating authorities and concessionaires. New institutional responses have recently been put forward in several countries, providing valuable materials to design a renewed policy mix which associates public and private incentives. This paper provides a survey of the experience of forest concessions in several Central African and South American countries. The concession system is examined in order to clarify the issues involved, the problems encountered, and what can be learned from the shared experience of these countries in the last decade. This paper argues that despite a sometimes patchy record, concessions can help promote SFM so long as they are packaged with a certain number of specific measures. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The behavior of stability regions of nonlinear autonomous dynamical systems subjected to parameter variation is studied in this paper. In particular, the behavior of stability regions and stability boundaries when the system undergoes a type-zero sadle-node bifurcation on the stability boundary is investigated in this paper. It is shown that the stability regions suffer drastic changes with parameter variation if type-zero saddle-node bifurcations occur on the stability boundary. A complete characterization of these changes in the neighborhood of a type-zero saddle-node bifurcation value is presented in this paper. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
This paper deals with the H(infinity) recursive estimation problem for general rectangular time-variant descriptor systems in discrete time. Riccati-equation based recursions for filtered and predicted estimates are developed based on a data fitting approach and game theory. In this approach, the nature determines a state sequence seeking to maximize the estimation cost, whereas the estimator tries to find an estimate that brings the estimation cost to a minimum. A solution exists for a specified gamma-level if the resulting cost is positive. In order to present some computational alternatives to the H(infinity) filters developed, they are rewritten in information form along with the respective array algorithms. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper deals with analysis of multiple random crack propagation in two-dimensional domains using the boundary element method (BEM). BEM is known to be a robust and accurate numerical technique for analysing this type of problem. The formulation adopted in this work is based on the dual BEM, for which singular and hyper-singular integral equations are used. We propose an iterative scheme to predict the crack growth path and the crack length increment at each time step. The proposed scheme able us to simulate localisation and coalescence phenomena, which is the main contribution of this paper. Considering the fracture mechanics analysis, the displacement correlation technique is applied to evaluate the stress intensity factors. The propagation angle and the equivalent stress intensity factor are calculated using the theory of maximum circumferential stress. Examples of simple and multi-fractured domains, loaded up to the rupture, are considered to illustrate the applicability of the proposed scheme. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents an accurate and efficient solution for the random transverse and angular displacement fields of uncertain Timoshenko beams. Approximate, numerical solutions are obtained using the Galerkin method and chaos polynomials. The Chaos-Galerkin scheme is constructed by respecting the theoretical conditions for existence and uniqueness of the solution. Numerical results show fast convergence to the exact solution, at excellent accuracies. The developed Chaos-Galerkin scheme accurately approximates the complete cumulative distribution function of the displacement responses. The Chaos-Galerkin scheme developed herein is a theoretically sound and efficient method for the solution of stochastic problems in engineering. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Fatigue and crack propagation are phenomena affected by high uncertainties, where deterministic methods fail to predict accurately the structural life. The present work aims at coupling reliability analysis with boundary element method. The latter has been recognized as an accurate and efficient numerical technique to deal with mixed mode propagation, which is very interesting for reliability analysis. The coupled procedure allows us to consider uncertainties during the crack growth process. In addition, it computes the probability of fatigue failure for complex structural geometry and loading. Two coupling procedures are considered: direct coupling of reliability and mechanical solvers and indirect coupling by the response surface method. Numerical applications show the performance of the proposed models in lifetime assessment under uncertainties, where the direct method has shown faster convergence than response surface method. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, the Askey-Wiener scheme and the Galerkin method are used to obtain approximate solutions to stochastic beam bending on Winkler foundation. The study addresses Euler-Bernoulli beams with uncertainty in the bending stiffness modulus and in the stiffness of the foundation. Uncertainties are represented by parameterized stochastic processes. The random behavior of beam response is modeled using the Askey-Wiener scheme. One contribution of the paper is a sketch of proof of existence and uniqueness of the solution to problems involving fourth order operators applied to random fields. From the approximate Galerkin solution, expected value and variance of beam displacement responses are derived, and compared with corresponding estimates obtained via Monte Carlo simulation. Results show very fast convergence and excellent accuracies in comparison to Monte Carlo simulation. The Askey-Wiener Galerkin scheme presented herein is shown to be a theoretically solid and numerically efficient method for the solution of stochastic problems in engineering.
Resumo:
A new two-dimensionally mapped infinite boundary element (IBE) is presented. The formulation is based on a triangular boundary element (BE) with linear shape functions instead of the quadrilateral IBEs usually found in the literature. The infinite solids analyzed are assumed to be three-dimensional, linear-elastic and isotropic, and Kelvin fundamental solutions are employed. One advantage of the proposed formulation over quadratic or higher order elements is that no additional degrees of freedom are added to the original BE mesh by the presence of the IBEs. Thus, the IBEs allow the mesh to be reduced without compromising the accuracy of the result. Two examples are presented, in which the numerical results show good agreement with authors using quadrilateral IBEs and analytical solutions. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, a formulation for representation of stiffeners in plane stress by the boundary elements method (BEM) in linear analysis is presented. The strategy is to adopt approximations for the displacements in the central line of the stiffener. With this simplification the Spurious oscillations in the stress along stiffeners with small thickness is prevented. Worked examples are analyzed to show the efficiency of these techniques, especially in the insertion of very narrow sub-regions, in which quasi-singular integrals are calculated, with stiffeners that are much stiffer than the main domain. The results obtained with this formulation are very close to those obtained with other formulations. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a domain boundary element formulation for inelastic saturated porous media with rate-independent behavior for the solid skeleton. The formulation is then applied to elastic-plastic behavior for the solid. Biot`s consolidation theory, extended to include irreversible phenomena is considered and the direct boundary element technique is used for the numerical solution after time discretization by the implicit Euler backward algorithm. The associated nonlinear algebraic problem is solved by the Newton-Raphson procedure whereby the loading/unloading conditions are fully taken into account and the consistent tangent operator defined. Only domain nodes (nodes defined inside the domain) are used to represent all domain values and the corresponding integrals are computed by using an accurate sub-elementation scheme. The developments are illustrated through the Drucker-Prager elastic-plastic model for the solid skeleton and various examples are analyzed with the proposed algorithms. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
A way of coupling digital image correlation (to measure displacement fields) and boundary element method (to compute displacements and tractions along a crack surface) is presented herein. It allows for the identification of Young`s modulus and fracture parameters associated with a cohesive model. This procedure is illustrated to analyze the latter for an ordinary concrete in a three-point bend test on a notched beam. In view of measurement uncertainties, the results are deemed trustworthy thanks to the fact that numerous measurement points are accessible and used as entries to the identification procedure. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We consider a class of two-dimensional problems in classical linear elasticity for which material overlapping occurs in the absence of singularities. Of course, material overlapping is not physically realistic, and one possible way to prevent it uses a constrained minimization theory. In this theory, a minimization problem consists of minimizing the total potential energy of a linear elastic body subject to the constraint that the deformation field must be locally invertible. Here, we use an interior and an exterior penalty formulation of the minimization problem together with both a standard finite element method and classical nonlinear programming techniques to compute the minimizers. We compare both formulations by solving a plane problem numerically in the context of the constrained minimization theory. The problem has a closed-form solution, which is used to validate the numerical results. This solution is regular everywhere, including the boundary. In particular, we show numerical results which indicate that, for a fixed finite element mesh, the sequences of numerical solutions obtained with both the interior and the exterior penalty formulations converge to the same limit function as the penalization is enforced. This limit function yields an approximate deformation field to the plane problem that is locally invertible at all points in the domain. As the mesh is refined, this field converges to the exact solution of the plane problem.