92 resultados para Crystallization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The whole Valle Fertil-La Huerta section appears as a calc-alkaline plutonic suite typical of a destructive plate margin. New Sr and Nd isotopic whole-rock data and published whole-rock geochemistry suggest that the less-evolved intermediate (dioritic) rocks can be derived by magmatic differentiation, mainly by hornblende + plagioclase +/- Fe-Ti oxide fractional crystallization, from mafic (gabbroic) igneous precursors. Closed-system differentiation, however, cannot produce the typical intermediate (tonalitic) and silicic (granodioritic) plutonic rocks, which requires a preponderant contribution of crustal components. Intermediate and silicic plutonic rocks from Valle Fertil-La Huerta section have formed in a plate subduction setting where the thermal and material input of mantle-derived magmas promoted fusion of fertile metasedimentary rocks and favored mixing of gabbroic or dioritic magmas with crustal granitic melts. Magma mixing is observable in the field and evident in variations of chemical elemental parameters and isotopic ratios, revealing that hybridization coupled with fractionation of magmas took place in the crust. Consideration of the whole-rock geochemical and isotopic data in the context of the Famatinian-Puna magmatic belt as a whole demonstrates that the petrologic model postulated for the Sierra Valle Fertil-La Huerta section has the potential to explain the generation of plutonic and volcanic rocks across the Early Ordovician paleoarc from central and northwestern Argentina. As the petrologic model does not require the intervention of old Precambrian continental crust, the nature of the basement on which thick accretionary turbiditic sequences were deposited remains a puzzling aspect. Discussion in this paper provides insights into the nature of magmatic source rocks and mechanisms of magma generation in Cordilleran-type volcano-plutonic arcs of destructive plate margins. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Major Gercino Shear Zone is one of the NE-SW lineaments that separate the Neoproterozoic Dom Feliciano Belt, of Brazil and Uruguay, into two different domains: a northwestern supracrustal domain from a southeastern granitoid domain. The shear zone, striking NE, is composed of protomylonites to ultramylonites with mainly dextral kinematic indicators. In Santa Catarina State, southern Brazil, the shear zone is composed of two mylonite belts. The mylonites have mineral orientations produced under greenschist fades conditions at a high strain rate. Strong flattening and coaxial deformation indicate the transpressive character, while the role of pure shear is emphasized by the orientation of the mylonite belts in relation to the inferred stress field component. The quartz microstructures point out that different dynamic recrystallization regimes and crystal plasticity were the dominant mechanisms of deformation during the mylonitization process. Additionally, the fabrics suggest that the glide systems are activated for deformation conditions compatible with the metamorphism in the middle greenschist facies. Elongated granitoid intrusions belonging to two petrographically, geochemically and isotopically distinct rock associations occur between the two mylonite belts. The structures observed in the granites result from a deformation range from magmatic to solid-state conditions points to a continuum of magma straining during and just after its crystallization. Conventional U-Pb analysis of multi-crystal zircon fractions yielded essentially identical ages of 609 +/- 16 Ma and 614 +/- 2 Ma for the two granitic associations, and constrain the transpressive phase of the shear zone. K-Ar ages of biotites between 585 and 560 Ma record the slow cooling and uplift of the intrusions. Some K-Ar ages of micas in regional mylonites are similar, suggesting that thermo-tectonic activity was intense up to this time, probably related to the agglutination of the granite belt to the supracrustal belt NW of the MGSZ. (C) 2009 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New U-Pb (SHRIMP) and (40)Ar/(39)Ar isotopic data of igneous rocks and mylonites of the Borborema Province (NE Brazil) show that a wide range of tectonothermal events affected the province during the transition from the Precambrian to the Cambrian. Concordant zircon U-Pb data constrained the crystallization age of mafic stocks, mafic to felsic dikes and granite batholiths between 548 and 533 Ma. These bodies were emplaced in a regional strain field combining extension and dextral shearing. The ductile shear deformation overprinted an older basement fabric to develop a low- to medium metamorphic grade vertical mylonite belt that cut the province in the E-W direction. Magnetic fabrics of the Cambrian batholiths determined by anisotropy of magnetic susceptibility are consistent with syntectonic emplacement. The magmatic pulses and shear deformation would have supplied enough heat to reset the synkinematic micas of mylonites to yield (40)Ar/(39)Ar plateau cooling ages between ca. 550 and 510 Ma. These results provide evidence that emplacement of Early Cambrian mafic and felsic magmas were accompanied by regional-scale shear deformations, probably in the consequence of late collisions along the West Gondwana margin. (C) 2010 Published by Elsevier B.V.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Early Cretaceous (similar to 129 Ma) silicic rocks crop out in SE Uruguay between the Laguna Merin and Santa Lucia basins in the Lascano, Sierra Sao Miguel. Salamanca and Minas areas They are mostly rhyolites with minor quartz-trachytes and are nearly contemporaneous with the Parana-Etendeka igneous province and with the first stages of South Atlantic Ocean opening A strong geochemical variability (particularly evident from Rb/Nb, Nb/Y trace element ratios) and a wide range of Sr-Nd isotopic ratios ((143)Nd/(144)Nd((129)) = 0.51178-0.51209, (87)Sr/(86)Sr((129)) = 0.70840-0.72417) characterize these rocks Geochemistry allows to distiniguish two compositional groups, corresponding to the north-eastern (Lascano and Sierra Sao Miguel, emplaced on the Neo-Proterozoic southern sector of the Dom Feliciano mobile belt) and south-eastern localities (Salamanca, Minas, emplace on the much older (Archean) Nico Perez teriane or on the boundary between the Dom Feliciano and Nico Perez termites) These compositional differences between the two groups are explained by variable mantle source and crust contributions. The origin of the silicic magmas is best explained by complex processes involving assimilation and fractional crystallization and mixing of a basaltic magma with upper crustal lithologies, for Lascano and Sierra Sao Miguel rhyolites. In the Salamanea and Minas rocks genesis, a stronger contribution from lower crust is indicated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Niquelandia complex is a Neoproterozoic mafic-ultramafic intrusion resulting from fractional crystallization of primary picritic basalt intrusions. It consists of two layered sequences: a lower and larger one (LS), where four stratigraphic units exhibit an upward decrease of ultramafic layers and increase of gabbroic layers; an upper, smaller sequence (US), separated from LS by a high-temperature shear zone and consisting of two stratigraphic units (gabbros + anorthosites and amphibolites). Nd and Sr isotopic analyses and rare earth element (REE) profiles provide evidence that the complex suffered important crustal contamination. The LS isotopic array trends from a DM region with positive epsilon Nd and moderately positive epsilon Sr towards a field occupied by crustal xenoliths, especially abundant in the upper LS (negative epsilon Nd and large, positive E:Sr). Each LS stratigraphic unit is distinct from the next underlying unit, showing lower epsilon Nd and higher epsilon Sr, suggesting inputs of fresh magma and mixing with the contaminated, residual magma. The US is characterised by a relatively high variation of epsilon Nd and constant epsilon Sr. REE patterns vary within each unit from LREE depleted to LREE enriched in the samples having lower epsilon Nd and higher epsilon Sr. The contamination process has been modelled by using the EC-AFC algorithms from [Spera, F.J., Bohrson, W.A., 2001. Energy-constrained open-system magmatic processes 1: general model and energy-constrained assimilation and fractional crystallization (EC-AFC) formulation. J. Petrology 42, 999-1018]. The differences between the LS and US isotopic arrays are consistent with contamination by the same crustal component, provided that its melting degree was higher in LS than in US. The different degrees of anatexis are explained by the heat budget released from the magma, higher in LS (because of its larger mass) than in US. Comparison of the correlations between isotopes and incompatible trace element ratios of the models and of the gabbros shows some differences, which are demonstrably related with the variable amount of cumulus phases and trapped melt in the gabbros. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An integrated whole-rock petrographic and geochemical study has been carried out on kamafugites and kimberlites of the Late Cretaceous Alto Paranaiba igneous province, in Brazil, and their main minerals, olivine, clinopyroxene, perovskite, phlogopite, spinels and ilmenite. Perovskite is by far the dominant repository for light lanthanides, Nb, Ta, Th and U, and occasionally other elements, reaching concentrations up to 3.4 x 10(4) chondrite values for light lanthanides and 105 chondrite for Th. A very strong fractionation between light and heavy lanthanides (chondrite-normalized La/Yb from similar to 175 to similar to 2000) is also observed. This is likely the first comprehensive dataset on natural perovskite. Clinopyroxene has variable trace-element contents. likely due to the different position of this phase in the crystallization sequence; Sc reaches values as high as 200 ppm whereas the lanthanides show very variable enrichment in light over heavy REE, and commonly show a negative Eu anomaly. The olivine, phlogopite (and tetra-ferriphlogopite), Cr-Ti oxide and ilmenite are substantially barren minerals for lanthanides and most other trace elements, with the exception of Ba, Cs and Rb in mica, and V, Nb and Ta in ilmenite. Estimated mineral/whole-rock partition coefficients for lanthanides in perovskite are similar to previous determinations, though much higher than those calculated in experiments with synthetic compositions, testifying once more to the complex behavior of these elements in a natural environment. The enormous potential for exploitation of lanthanides, Th, U and high-field-strength elements in the Brazilian kamafugites, kimberlites and related rocks is clearly shown.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Felsic microgranular enclaves with structures indicating that they interacted in a plastic state with their chemically similar host granite are abundant in the Maua Pluton, SE Brazil. Larger plagioclase xenocrysts are in textural disequilibrium with the enclave groundmass and show complex zoning patterns with partially resorbed An-rich cores (locally with patchy textures) surrounded by more sodic rims. In situ laser ablation-(multi-collector) inductively coupled plasma mass spectrometry trace element and Sr isotopic analyses performed on the plagioclase xenocrysts indicate open-system crystallization; however, no evidence of derivation from more primitive basic melts is observed. The An-rich cores have more radiogenic initial Sr isotopic ratios that decrease towards the outermost part of the rims, which are in isotopic equilibrium with the matrix plagioclase. These profiles may have been produced by either (1) diffusional re-equilibration after rim crystallization from the enclave-forming magma, as indicated by relatively short calculated residence times, or (2) episodic contamination with a decrease of the contaminant ratio proportional to the extent to which the country rocks were isolated by the crystallization front. Profiles of trace elements with high diffusion coefficients would require unrealistically long residence times, and can be modeled in terms of fractional crystallization. A combination of trace element and Sr isotope data suggests that the felsic microgranular enclaves from the Maua Pluton are the products of interaction between end-member magmas that had similar compositions, thus recording `self-mixing` events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Ibituruna quartz-syenite was emplaced as a sill in the Ribeira-Aracuai Neoproterozoic belt (Southeastern Brazil) during the last stages of the Gondwana supercontinent amalgamation. We have measured the Anisotropy of Magnetic Susceptibility (AMS) in samples from the Ibituruna sill to unravel its magnetic fabric that is regarded as a proxy for its magmatic fabric. A large magnetic anisotropy, dominantly due to magnetite, and a consistent magnetic fabric have been determined over the entire Ibituruna massif. The magmatic foliation and lineation are strikingly parallel to the solid-state mylonitic foliation and lineation measured in the country-rock. Altogether, these observations suggest that the Ibituruna sill was emplaced during the high temperature (similar to 750 degrees C) regional deformation and was deformed before full solidification coherently with its country-rock. Unexpectedly, geochronological data suggest a rather different conclusion. LA-ICP-MS and SHRIMP ages of zircons from the Ibituruna quartz-syenite are in the range 530-535 Ma and LA-ICP-MS ages of zircons and monazites from synkinematic leucocratic veins in the country-rocks suggest a crystallization at similar to 570-580 Ma, i.e., an HT deformation >35My older than the emplacement of the Ibituruna quartz-syenite. Conclusions from the structural and the geochronological studies are therefore conflicting. A possible explanation arises from (40)Ar-(39)Ar thermochronology. We have dated amphiboles from the quartz-syenite, and amphiboles and biotites from the country-rock. Together with the ages of monazites and zircons in the country-rock, (40)Ar-(39)Ar mineral ages suggest a very low cooling rate: <3 degrees C/My between 570 and similar to 500 Ma and similar to 5 degrees C/My between 500 and 460 Ma. Assuming a protracted regional deformation consistent over tens of My, under such stable thermal conditions the fabric and microstructure of deformed rocks may remain almost unchanged even if they underwent and recorded strain pulses separated by long periods of time. This may be a characteristic of slow cooling ""hot orogens"" that rocks deformed at significantly different periods during the orogeny, but under roughly unchanged temperature conditions, may display almost indiscernible microstructure and fabric. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zirconium- and Ba-rich minerals are found in gabbroic rocks from the Ponte Nova alkaline mafic-ultramafic massif in southeastern Brazil. The unusual mineralogical assemblage includes zirconolite, baddeleyite, Ba-rich alkali feldspar, and Ba- and Ti-rich biotite. Zirconolite of the Ponte Nova massif has higher levels of Zr (up to 1.172 apfu) than those registered in other terrestrial rocks and a prominent enrichment in the light rare-earth elements. Baddeleyite contains small quantities of Hf, Ti, and Fe. The Ba-rich alkali feldspar and Ba- and Ti-rich biotite contain up to 9.25 and 7.35 wt% BaO, respectively, and the biotite contains up to 12.01 wt% TiO(2). In the different intrusions of the Ponte Nova massif, such an unusual assemblage typifies the residual magma after the crystallization of clinopyroxene and olivine from previously enriched basanitic parental magma. The different trends of enrichments in REE and Th + U found for zirconolite of the intrusions of the Ponte Nova massif provide a better understanding of the variable degrees of enrichment of incompatible elements of the distinct gabbroic bodies. A lithospheric mantle source enriched in incompatible elements by the metasomatic action of volatile-rich fluids and with the presence of phlogopite or amphibole (or both) and other minor accessory phases could explain the presence of the Zr- and Ba-rich minerals in this gabbroic massif.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zircon recrystallization is a common process during high-grade metamorphism and promotes partial or complete resetting of the original isotopic and chemical characteristics of the mineral and thus complicates U-Pb geochronological interpretation. In Central Brazil, this complexity may be illustrated by three composite mafic-ultramafic intrusions metamorphosed under amphibolite-to-granulite conditions. Their ages of emplacement and metamorphic ages have been a matter of controversy for the last thirty years. The Serra da Malacacheta and Barro Alto complexes make up the southernmost of these layered bodies and four samples from distinct rock types were investigated in order to verify the consequences of metamorphic alteration of zircon for U-Pb dating. Cathodoluminescent imaging reveals internal features which are typical of concomitant dissolution-reprecipitation processes, such as convolute zoning and inward-moving recrystallization fronts, even in samples in which partially preserved igneous textures are observed. Due to this extensive alteration, LA-ICPMS U-Pb isotopic analysis yielded inconclusive data. However, in situ Hf isotopic and trace-element analyses help to clarify the real meaning of the geochronological data. Low Lu/Hf (<0.004) and homogeneous (176)Hf/(177)Hf(t) values imply that the zircon populations within individual samples have crystallized in a single episode, despite the observed variations in age values. Trace element signatures of zircon grains from garnet-bearing samples reveal that they were unreactive to the development of the peak metamorphism mineral assemblage and, thus, the main chemical feature in such grains is attributed to a coupled dissolution-reprecipitation process. However, in the Cafelandia amphibolite an additional alteration process is identified, probably related to the influx of late-stage fluids. Combined isotopic and geochemical investigation on zircon grains allowed the distinction of two magmatic events. The first corresponds to the crystallization of the Serra da Malacacheta Complex and characterizes a juvenile magmatism at similar to 1.3 Ga. The younger episode, recognized in the Barro Alto Complex, is dated at ca. 800 Ma and is represented by mafic and ultramafic rocks showing intense contamination with continental crust, implying that the emplacement took place, most likely, in a continental back-arc setting. Altered zircon domains as well as titanite grains date the metamorphic event at ca. 760-750 Ma. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Early Cretaceous alkaline magmatism in the northeastern region of Paraguay (Amambay Province) is represented by stocks, plugs, dikes, and dike swarms emplaced into Carboniferous to Triassic-Jurassic sediments and Precambrian rocks. This magmatism is tectonically related to the Ponta Pora Arch, a NE-trending structural feature, and has the Cerro Sarambi and Cerro Chiriguelo carbonatite complexes as its most significant expressions. Other alkaline occurrences found in the area are the Cerro Guazu and the small bodies of Cerro Apua, Arroyo Gasory, Cerro Jhu, Cerro Tayay, and Cerro Teyu. The alkaline rocks comprise ultramafic-mafic, syenitic, and carbonatitic petrographic associations in addition to lithologies of variable composition and texture occurring as dikes; fenites are described in both carbonatite complexes. Alkali feldspar and clinopyroxene, ranging from diopside to aegirine, are the most abundant minerals, with feldspathoids (nepheline, analcime), biotite, and subordinate Ti-rich garnet; minor constituents are Fe-Ti oxides and cancrinite as the main alteration product from nepheline. Chemically, the Amambay silicate rocks are potassic to highly potassic and have miaskitic affinity, with the non-cumulate intrusive types concentrated mainly in the saturated to undersaturated areas in silica syenitic fields. Fine-grained rocks are also of syenitic affiliation or represent more mafic varieties. The carbonatitic rocks consist dominantly of calciocarbonatites. Variation diagrams plotting major and trace elements vs. SiO(2) concentration for the Cerro Sarambi rocks show positive correlations for Al(2)O(3), K(2)O, and Rb, and negative ones for TiO(2), MgO, Fe(2)O(3), CaO, P(2)O(5), and Sr, indicating that fractional crystallization played an important role in the formation of the complex. Incompatible elements normalized to primitive mantle display positive spikes for Rb, La, Pb, Sr, and Sm, and negative for Nb-Ta, P, and Ti, as these negative anomalies are considerably more pronounced in the carbonatites. Chondrite-normalized REE patterns point to the high concentration of these elements and to the strong LRE/HRE fractionation. The Amambay rocks are highly enriched in radiogenic Sr and have T(DM) model ages that vary from 1.6 to 1.1 Ga. suggesting a mantle source enriched in incompatible elements by metasomatic events in Paleo-Mesoproterozoic times. Data are consistent with the derivation of the Cerro Sarambi rocks from a parental magma of lamprophyric (minette) composition and suggest an origin by liquid immiscibility processes for the carbonatites. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We used the fabrics of two granite plutons and U/Pb (SHRIMP) zircon ages to constrain the tectonic evolution of the E-trending Patos shear zone (Borborema Province, NE Brazil). The pre-tectonic Teixeira batholith consists of an amphibole leucogranite locally with aegirine-augite. Zircons from a syenogranite yielded crystallization ages of 591 +/- 5 Ma. The batholith fabrics were determined by anisotropy of magnetic susceptibility (AMS) and mineral shape preferred orientation. The fabrics support pre-transcurrent batholith emplacement, as evidenced by: (i) magmatic/magnetic fabrics in low susceptibility (<0.35 mSI) leucogranites highly discordant to the regional host rock structure, and (ii) concordant magnetic fabrics restricted to high susceptibility (>1 mSI) corridors connected to shear zones branching off from Patos. One of these satellite shear zones controlled the syntectonic emplacement of the Serra Redonda pluton, which yields a crystallization age of 576 +/- 3 Ma. This late shearing event marks the peak regional deformation that, south of Patos, was coupled to crustal shortening nearly perpendicular to the shear belt. The chronology of the deformational events indicates that the major shear zones of the eastern Borborema are late structures active after the crustal blocks amalgamated. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dating granulites has always been of great interest because they represent one of the most extreme settings of an orogen. Owing to the resilience of zircon, even in such severe environments, the link between P-T conditions and geological time is possible. However, a challenge to geochronologists is to define whether the growth of new zircon is related to pre- or post-P-T peak conditions and which processes might affect the (re) crystallization. In this context, the Anapolis-Itaucu Complex, a high-grade complex in central Brazil with ultrahigh temperature (UHT) granulites, may provide valuable information within this topic. The Anapolis-Itaucu Complex (AIC) includes ortho- and paragranulites, locally presenting UHT mineral assemblages, with igneous zircon ages varying between 760 and 650 Ma and metamorphic overgrowths dated at around 650-640 Ma. Also common in the Anapolis-Itaucu Complex are layered mafic-ultramafic complexes metamorphosed under high-grade conditions. This article presents the first geological and geochronological constraints of three of these layered complexes within the AIC, the Damolandia, Taquaral and Goianira-Trindade complexes. U-Pb (LA-MC-ICPMS, SHRIMP and ID-TIMS) zircon analyses reveal a spread of concordant ages spanning within an age interval of similar to 80 Ma with an ""upper"" intercept age of similar to 670 Ma. Under cathodoluminescence imaging, these crystals show partially preserved primary sector zoning, as well as internal textures typical of alteration during high-grade metamorphism, such as inward-moving boundaries. Zircon grains reveal homogeneous initial (176)Hf/(177)Hf values in distinct crystal-scale domains in all samples. Moreover. Hf isotopic ratios show correlation neither with U-Pb ages nor with Th/U ratios, suggesting that zircon grains crystallized during a single growth event. It is suggested, therefore, that the observed spread of concordant U-Pb ages may be related to a memory effect due to coupled dissolution-reprecipitation process during high grade metamorphism. Therefore, understanding the emplacement and metamorphism of this voluminous mafic magmatism is crucial as it may represent an additional heat source for the development of the ultrahigh temperature paragenesis recorded in the paragranulites. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Serrinha magmatic suite (Mineiro belt) crops out in the southern edge of the Sao Francisco craton, comprising the Brito quartz-diorite, Brumado de Cima and Brumado de Baixo granodiorites, granophyres and felsic sub-volcanic and volcanic rocks, part of which intruded into the Nazareno greenstone belt. The suite rocks have petrographic features that are consistent with magma supercooling due to the low water content combined with volatile loss, leading to crystallization of quartz and alkaline feldspar at the rims of plagioclase phenocrysts (granophyric intergrowth). The investigated rocks are sub-alkaline, calc-alkaline and show low content in rare earth elements. The U-Pb zircon crystallization ages for the Brumado de Cima granodiorite [2227 +/- 22 (23) Ma] and a coeval granophyre [2211 +/- 22 (23) Ma], coupled with available single-zircon Pb evaporation ages for the Brito and Brumado de Baixo plutons, are significantly older than the ""Minas orogeny"" (ca. 2100-2050 Ga) of Quadrilatero Ferrifero area, eastward from the Serrinha suite. Our data establish an early Rhyacian event tectonically linked with the evolution of the Mineiro belt. The bulk Nd isotopic signature [low negative to positive epsilon(Nd(t)) values] of the Serrinha samples are consistent with the important role of Paleoproterozoic mantle components in the magma genesis. The integrated geologic, geochemical and isotopic information suggests that Paleoproterozoic evolution of the Mineiro belt initiated in a passive continental margin basin with deposition of the Minas Supergroup at ca. 2500 Ma. This stage was succeeded by outboard rupture of the oceanic lithosphere with development and coalescence of progressively younger magmatic arcs during Rhyacian time. One of the earliest arcs formed the Serrinha suite. The tectonic collage of the Serrinha and Ritapolis (2190-2120 Ma) arcs produced the NE-SW Lenheiro shear zone, resulting in mylonitization and recrystallization of both the granitoid intrusions and host rocks. As a matter of fact juxtaposition of distinct magmatic units in age and origin took place along the Lenheiros structure in this sector of the Mineiro belt. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The results of geological mapping, chemical analysis and radiometric dating of metabasic rocks of Betara Formation, and mapping and dating of those present in the Betara basement nucleus together with mylonitic granodiorite and syenogranite are reported here. U-Pb analysis of bulk zircon fractions from the metabasic rocks of the basement nucleus yielded a Statherian age of 1790 +/- 22 Ma, while the metabasic rocks from the upper part of the Betara Formation yielded a Calymmian age between 1500 and 1450 Ma. This age is a minimum for the deposition of the Betara Formation. The older metabasic rocks are associated with post-tectonic, possibly anorogenic syenogranite, while the younger ones are gabbro or very porphyritic ankaramite whose REE patterns are consistent with crystallization from an N-MORB parent magma. The observations and data point to the probable events associated with extensional processes of the end of Paleoproterozoic and early Mesoproterozoic. Similar registers of Statherian (1.80-1.75 Ga) and Calymmian (1.50-1.45 Ga) extensional events are recorded in other parts of the South American and African continents. The Neoproterozoic witnessed the formation and junction of the tectonic slices which formed the Apiai domain during the assemblage of western Gondwana. (C) 2010 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.