Conflicting structural and geochronological data from the Ibituruna quartz-syenite (SE Brazil): Effect of protracted ""hot"" orogeny and slow cooling rate?
Contribuinte(s) |
UNIVERSIDADE DE SÃO PAULO |
---|---|
Data(s) |
20/10/2012
20/10/2012
2009
|
Resumo |
The Ibituruna quartz-syenite was emplaced as a sill in the Ribeira-Aracuai Neoproterozoic belt (Southeastern Brazil) during the last stages of the Gondwana supercontinent amalgamation. We have measured the Anisotropy of Magnetic Susceptibility (AMS) in samples from the Ibituruna sill to unravel its magnetic fabric that is regarded as a proxy for its magmatic fabric. A large magnetic anisotropy, dominantly due to magnetite, and a consistent magnetic fabric have been determined over the entire Ibituruna massif. The magmatic foliation and lineation are strikingly parallel to the solid-state mylonitic foliation and lineation measured in the country-rock. Altogether, these observations suggest that the Ibituruna sill was emplaced during the high temperature (similar to 750 degrees C) regional deformation and was deformed before full solidification coherently with its country-rock. Unexpectedly, geochronological data suggest a rather different conclusion. LA-ICP-MS and SHRIMP ages of zircons from the Ibituruna quartz-syenite are in the range 530-535 Ma and LA-ICP-MS ages of zircons and monazites from synkinematic leucocratic veins in the country-rocks suggest a crystallization at similar to 570-580 Ma, i.e., an HT deformation >35My older than the emplacement of the Ibituruna quartz-syenite. Conclusions from the structural and the geochronological studies are therefore conflicting. A possible explanation arises from (40)Ar-(39)Ar thermochronology. We have dated amphiboles from the quartz-syenite, and amphiboles and biotites from the country-rock. Together with the ages of monazites and zircons in the country-rock, (40)Ar-(39)Ar mineral ages suggest a very low cooling rate: <3 degrees C/My between 570 and similar to 500 Ma and similar to 5 degrees C/My between 500 and 460 Ma. Assuming a protracted regional deformation consistent over tens of My, under such stable thermal conditions the fabric and microstructure of deformed rocks may remain almost unchanged even if they underwent and recorded strain pulses separated by long periods of time. This may be a characteristic of slow cooling ""hot orogens"" that rocks deformed at significantly different periods during the orogeny, but under roughly unchanged temperature conditions, may display almost indiscernible microstructure and fabric. (C) 2009 Elsevier B.V. All rights reserved. CAPES/COFECUB[Te 588/07] COFECUB Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) CNRS-FAPESP Centre National de la Recherche Scientifique (CNRS) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Geosciences-Montpellier Hot-Orogens Tranverse Project Geosciences-Montpellier ""Hot-Orogens Tranverse Project"" |
Identificador |
TECTONOPHYSICS, v.477, n.3/Abr, Special Issue, p.174-196, 2009 0040-1951 http://producao.usp.br/handle/BDPI/30266 10.1016/j.tecto.2009.02.039 |
Idioma(s) |
eng |
Publicador |
ELSEVIER SCIENCE BV |
Relação |
Tectonophysics |
Direitos |
restrictedAccess Copyright ELSEVIER SCIENCE BV |
Palavras-Chave | #Hot orogen #Magmatic structure and deformation #AMS #U-Pb and 40Ar-39Ar geochronology #Slow cooling rate #SE-Brazil neoproterozoic orogeny #LA-ICP-MS #SAO-FRANCISCO CRATON #U-TH-PB #BEARING GRANITE PLUTON #NM ND-YAG #MAGNETIC-SUSCEPTIBILITY #RIBEIRA BELT #ANHYSTERETIC REMANENCE #EASTERN MARGIN #WEST GONDWANA #Geochemistry & Geophysics |
Tipo |
article original article publishedVersion |