121 resultados para Convex optimization problem
Resumo:
Load cells are used extensively in engineering fields. This paper describes a novel structural optimization method for single- and multi-axis load cell structures. First, we briefly explain the topology optimization method that uses the solid isotropic material with penalization (SIMP) method. Next, we clarify the mechanical requirements and design specifications of the single- and multi-axis load cell structures, which are formulated as an objective function. In the case of multi-axis load cell structures, a methodology based on singular value decomposition is used. The sensitivities of the objective function with respect to the design variables are then formulated. On the basis of these formulations, an optimization algorithm is constructed using finite element methods and the method of moving asymptotes (MMA). Finally, we examine the characteristics of the optimization formulations and the resultant optimal configurations. We confirm the usefulness of our proposed methodology for the optimization of single- and multi-axis load cell structures.
Resumo:
A finite element analysis and a parametric optimization of single-axis acoustic levitators are presented. The finite element method is used to simulate a levitator consisting of a Langevin ultrasonic transducer with a plane radiating surface and a plane reflector. The transducer electrical impedance, the transducer face displacement, and the acoustic radiation potential that acts on small spheres are determined by the finite element method. The numerical electrical impedance is compared with that acquired experimentally by an impedance analyzer, and the predicted displacement is compared with that obtained by a fiber-optic vibration sensor. The numerical acoustic radiation potential is verified experimentally by placing small spheres in the levitator. The same procedure is used to optimize a levitator consisting of a curved reflector and a concave-faced transducer. The numerical results show that the acoustic radiation force in the new levitator is enhanced 604 times compared with the levitator consisting of a plane transducer and a plane reflector. The optimized levitator is able to levitate 3, 2.5-mm diameter steel spheres with a power consumption of only 0.9 W.
Resumo:
Electrical impedance tomography (EIT) captures images of internal features of a body. Electrodes are attached to the boundary of the body, low intensity alternating currents are applied, and the resulting electric potentials are measured. Then, based on the measurements, an estimation algorithm obtains the three-dimensional internal admittivity distribution that corresponds to the image. One of the main goals of medical EIT is to achieve high resolution and an accurate result at low computational cost. However, when the finite element method (FEM) is employed and the corresponding mesh is refined to increase resolution and accuracy, the computational cost increases substantially, especially in the estimation of absolute admittivity distributions. Therefore, we consider in this work a fast iterative solver for the forward problem, which was previously reported in the context of structural optimization. We propose several improvements to this solver to increase its performance in the EIT context. The solver is based on the recycling of approximate invariant subspaces, and it is applied to reduce the EIT computation time for a constant and high resolution finite element mesh. In addition, we consider a powerful preconditioner and provide a detailed pseudocode for the improved iterative solver. The numerical results show the effectiveness of our approach: the proposed algorithm is faster than the preconditioned conjugate gradient (CG) algorithm. The results also show that even on a standard PC without parallelization, a high mesh resolution (more than 150,000 degrees of freedom) can be used for image estimation at a relatively low computational cost. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The ability to control both the minimum size of holes and the minimum size of structural members are essential requirements in the topology optimization design process for manufacturing. This paper addresses both requirements by means of a unified approach involving mesh-independent projection techniques. An inverse projection is developed to control the minimum hole size while a standard direct projection scheme is used to control the minimum length of structural members. In addition, a heuristic scheme combining both contrasting requirements simultaneously is discussed. Two topology optimization implementations are contributed: one in which the projection (either inverse or direct) is used at each iteration; and the other in which a two-phase scheme is explored. In the first phase, the compliance minimization is carried out without any projection until convergence. In the second phase, the chosen projection scheme is applied iteratively until a solution is obtained while satisfying either the minimum member size or minimum hole size. Examples demonstrate the various features of the projection-based techniques presented.
Resumo:
This work deals with the problem of minimizing the waste of space that occurs on a rotational placement of a set of irregular bi-dimensional items inside a bi-dimensional container. This problem is approached with a heuristic based on Simulated Annealing (SA) with adaptive neighborhood. The objective function is evaluated in a constructive approach, where the items are placed sequentially. The placement is governed by three different types of parameters: sequence of placement, the rotation angle and the translation. The rotation applied and the translation of the polygon are cyclic continuous parameters, and the sequence of placement defines a combinatorial problem. This way, it is necessary to control cyclic continuous and discrete parameters. The approaches described in the literature deal with only type of parameter (sequence of placement or translation). In the proposed SA algorithm, the sensibility of each continuous parameter is evaluated at each iteration increasing the number of accepted solutions. The sensibility of each parameter is associated to its probability distribution in the definition of the next candidate.
Resumo:
Micro-tools offer significant promise in a wide range of applications Such as cell Manipulation, microsurgery, and micro/nanotechnology processes. Such special micro-tools consist of multi-flexible structures actuated by two or more piezoceramic devices that must generate output displacements and forces lit different specified points of the domain and at different directions. The micro-tool Structure acts as a mechanical transformer by amplifying and changing the direction of the piezoceramics Output displacements. The design of these micro-tools involves minimization of the coupling among movements generated by various piezoceramics. To obtain enhanced micro-tool performance, the concept of multifunctional and functionally graded materials is extended by, tailoring elastic and piezoelectric properties Of the piezoceramics while simultaneously optimizing the multi-flexible structural configuration using multiphysics topology optimization. The design process considers the influence of piezoceramic property gradation and also its polarization sign. The method is implemented considering continuum material distribution with special interpolation of fictitious densities in the design domain. As examples, designs of a single piezoactuator, an XY nano-positioner actuated by two graded piezoceramics, and a micro-gripper actuated by three graded piezoceramics are considered. The results show that material gradation plays an important role to improve actuator performance, which may also lead to optimal displacements and coupling ratios with reduced amount of piezoelectric material. The present examples are limited to two-dimensional models because many of the applications for Such micro-tools are planar devices. Copyright (c) 2008 John Wiley & Sons, Ltd.
Resumo:
Systems of distributed artificial intelligence can be powerful tools in a wide variety of practical applications. Its most surprising characteristic, the emergent behavior, is also the most answerable for the difficulty in. projecting these systems. This work proposes a tool capable to beget individual strategies for the elements of a multi-agent system and thereof providing to the group means on obtaining wanted results, working in a coordinated and cooperative manner as well. As an application example, a problem was taken as a basis where a predators` group must catch a prey in a three-dimensional continuous ambient. A synthesis of system strategies was implemented of which internal mechanism involves the integration between simulators by Particle Swarm Optimization algorithm (PSO), a Swarm Intelligence technique. The system had been tested in several simulation settings and it was capable to synthesize automatically successful hunting strategies, substantiating that the developed tool can provide, as long as it works with well-elaborated patterns, satisfactory solutions for problems of complex nature, of difficult resolution starting from analytical approaches. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Simulated annealing (SA) is an optimization technique that can process cost functions with degrees of nonlinearities, discontinuities and stochasticity. It can process arbitrary boundary conditions and constraints imposed on these cost functions. The SA technique is applied to the problem of robot path planning. Three situations are considered here: the path is represented as a polyline; as a Bezier curve; and as a spline interpolated curve. In the proposed SA algorithm, the sensitivity of each continuous parameter is evaluated at each iteration increasing the number of accepted solutions. The sensitivity of each parameter is associated to its probability distribution in the definition of the next candidate. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Previous papers related to the optimization of pressure vessels have considered the optimization of the nozzle independently from the dished end. This approach generates problems such as thickness variation from nozzle to dished end (coupling cylindrical region) and, as a consequence, it reduces the optimality of the final result which may also be influenced by the boundary conditions. Thus, this work discusses shape optimization of axisymmetric pressure vessels considering an integrated approach in which the entire pressure vessel model is used in conjunction with a multi-objective function that aims to minimize the von-Mises mechanical stress from nozzle to head. Representative examples are examined and solutions obtained for the entire vessel considering temperature and pressure loading. It is noteworthy that different shapes from the usual ones are obtained. Even though such different shapes may not be profitable considering present manufacturing processes, they may be competitive for future manufacturing technologies, and contribute to a better understanding of the actual influence of shape in the behavior of pressure vessels. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Solid-liquid phase equilibrium modeling of triacylglycerol mixtures is essential for lipids design. Considering the alpha polymorphism and liquid phase as ideal, the Margules 2-suffix excess Gibbs energy model with predictive binary parameter correlations describes the non ideal beta and beta` solid polymorphs. Solving by direct optimization of the Gibbs free energy enables one to predict from a bulk mixture composition the phases composition at a given temperature and thus the SFC curve, the melting profile and the Differential Scanning Calorimetry (DSC) curve that are related to end-user lipid properties. Phase diagram, SFC and DSC curve experimental data are qualitatively and quantitatively well predicted for the binary mixture 1,3-dipalmitoyl-2-oleoyl-sn-glycerol (POP) and 1,2,3-tripalmitoyl-sn-glycerol (PPP), the ternary mixture 1,3-dimyristoyl-2-palmitoyl-sn-glycerol (MPM), 1,2-distearoyl-3-oleoyl-sn-glycerol (SSO) and 1,2,3-trioleoyl-sn-glycerol (OOO), for palm oil and cocoa butter. Then, addition to palm oil of Medium-Long-Medium type structured lipids is evaluated, using caprylic acid as medium chain and long chain fatty acids (EPA-eicosapentaenoic acid, DHA-docosahexaenoic acid, gamma-linolenic-octadecatrienoic acid and AA-arachidonic acid), as sn-2 substitutes. EPA, DHA and AA increase the melting range on both the fusion and crystallization side. gamma-linolenic shifts the melting range upwards. This predictive tool is useful for the pre-screening of lipids matching desired properties set a priori.
Resumo:
Here, we study the stable integration of real time optimization (RTO) with model predictive control (MPC) in a three layer structure. The intermediate layer is a quadratic programming whose objective is to compute reachable targets to the MPC layer that lie at the minimum distance to the optimum set points that are produced by the RTO layer. The lower layer is an infinite horizon MPC with guaranteed stability with additional constraints that force the feasibility and convergence of the target calculation layer. It is also considered the case in which there is polytopic uncertainty in the steady state model considered in the target calculation. The dynamic part of the MPC model is also considered unknown but it is assumed to be represented by one of the models of a discrete set of models. The efficiency of the methods presented here is illustrated with the simulation of a low order system. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In this study, the concept of cellular automata is applied in an innovative way to simulate the separation of phases in a water/oil emulsion. The velocity of the water droplets is calculated by the balance of forces acting on a pair of droplets in a group, and cellular automata is used to simulate the whole group of droplets. Thus, it is possible to solve the problem stochastically and to show the sequence of collisions of droplets and coalescence phenomena. This methodology enables the calculation of the amount of water that can be separated from the emulsion under different operating conditions, thus enabling the process to be optimized. Comparisons between the results obtained from the developed model and the operational performance of an actual desalting unit are carried out. The accuracy observed shows that the developed model is a good representation of the actual process. (C) 2010 Published by Elsevier Ltd.
Resumo:
This paper deals with the problem of tracking target sets using a model predictive control (MPC) law. Some MPC applications require a control strategy in which some system outputs are controlled within specified ranges or zones (zone control), while some other variables - possibly including input variables - are steered to fixed target or set-point. In real applications, this problem is often overcome by including and excluding an appropriate penalization for the output errors in the control cost function. In this way, throughout the continuous operation of the process, the control system keeps switching from one controller to another, and even if a stabilizing control law is developed for each of the control configurations, switching among stable controllers not necessarily produces a stable closed loop system. From a theoretical point of view, the control objective of this kind of problem can be seen as a target set (in the output space) instead of a target point, since inside the zones there are no preferences between one point or another. In this work, a stable MPC formulation for constrained linear systems, with several practical properties is developed for this scenario. The concept of distance from a point to a set is exploited to propose an additional cost term, which ensures both, recursive feasibility and local optimality. The performance of the proposed strategy is illustrated by simulation of an ill-conditioned distillation column. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper concern the development of a stable model predictive controller (MPC) to be integrated with real time optimization (RTO) in the control structure of a process system with stable and integrating outputs. The real time process optimizer produces Optimal targets for the system inputs and for Outputs that Should be dynamically implemented by the MPC controller. This paper is based oil a previous work (Comput. Chem. Eng. 2005, 29, 1089) where a nominally stable MPC was proposed for systems with the conventional control approach where only the outputs have set points. This work is also based oil the work of Gonzalez et at. (J. Process Control 2009, 19, 110) where the zone control of stable systems is studied. The new control for is obtained by defining ail extended control objective that includes input targets and zone controller the outputs. Additional decision variables are also defined to increase the set of feasible solutions to the control problem. The hard constraints resulting from the cancellation of the integrating modes Lit the end of the control horizon are softened,, and the resulting control problem is made feasible to a large class of unknown disturbances and changes of the optimizing targets. The methods are illustrated with the simulated application of the proposed,approaches to a distillation column of the oil refining industry.
Resumo:
Several MPC applications implement a control strategy in which some of the system outputs are controlled within specified ranges or zones, rather than at fixed set points [J.M. Maciejowski, Predictive Control with Constraints, Prentice Hall, New Jersey, 2002]. This means that these outputs will be treated as controlled variables only when the predicted future values lie outside the boundary of their corresponding zones. The zone control is usually implemented by selecting an appropriate weighting matrix for the output error in the control cost function. When an output prediction is inside its zone, the corresponding weight is zeroed, so that the controller ignores this output. When the output prediction lies outside the zone, the error weight is made equal to a specified value and the distance between the output prediction and the boundary of the zone is minimized. The main problem of this approach, as long as stability of the closed loop is concerned, is that each time an output is switched from the status of non-controlled to the status of controlled, or vice versa, a different linear controller is activated. Thus, throughout the continuous operation of the process, the control system keeps switching from one controller to another. Even if a stabilizing control law is developed for each of the control configurations, switching among stable controllers not necessarily produces a stable closed loop system. Here, a stable M PC is developed for the zone control of open-loop stable systems. Focusing on the practical application of the proposed controller, it is assumed that in the control structure of the process system there is an upper optimization layer that defines optimal targets to the system inputs. The performance of the proposed strategy is illustrated by simulation of a subsystem of an industrial FCC system. (C) 2008 Elsevier Ltd. All rights reserved.