164 resultados para Chloride ion diffusion coefficient
Resumo:
Using a quasitoroidal set of coordinates with coaxial circular magnetic surfaces, the Vlasov equation is solved for collisionless plasmas, and the dielectric tensor is found for large aspect ratio tokamaks in a low frequency band. Taking into account q-profile and charge separation parallel electric field, it is found that the Alfven wave continuum is deformed by ion geodesic effects producing continuum minimum at the rational magnetic surfaces. Low frequency geodesic ion induced Alfven waves are found below the continuum minimum where collisionless damping has a gap for Maxwell distribution. In kinetic approach, the ion thermal motion defines the geodesic effect but the mode frequency is strongly corrected due to parallel motion of electrons.
Resumo:
A buried conducting layer of metal/polymer nanocomposite was formed by very low energy gold ion implantation into polymethylmethacrylate. The conducting layer is similar to 3 nm deep and of width similar to 1 nm. In situ resistivity measurements were performed as the implantation proceeded, and the conductivity thus obtained as a function of buried gold concentration. The measured conductivity obeys the behavior well established for composites in the percolation regime. The critical concentration, below which the polymer remains an insulator, is attained at a dose similar to 1.0 x 10(16) atoms/cm(2) of implanted gold ions. (C) 2008 American Institute of Physics.
Resumo:
We calculate the nuclear cross section for coherent and incoherent vector meson production within the QCD color dipole picture, including saturation effects. Theoretical estimates for scattering on both light and heavy nuclei are given over a wide range of energy.
Resumo:
A comparison is made between results obtained using smooth initial conditions and event-by-event initial conditions in the hydrodynamical description of relativistic nuclear collisions. Some new results on directed flow are also included.
Resumo:
Identifying hadronic molecular states and/or hadrons with multiquark components either with or without exotic quantum numbers is a long-standing challenge in hadronic physics. We suggest that studying the production of these hadrons in relativistic heavy ion collisions offers a promising resolution to this problem as yields of exotic hadrons are expected to be strongly affected by their structures. Using the coalescence model for hadron production, we find that, compared to the case of a nonexotic hadron with normal quark numbers, the yield of an exotic hadron is typically an order of magnitude smaller when it is a compact multiquark state and a factor of 2 or more larger when it is a loosely bound hadronic molecule. We further find that some of the newly proposed heavy exotic states could be produced and realistically measured in these experiments.
Resumo:
Thermodiffusion in a lyotropic mixture of water and potassium laurate is investigated by means of an optical technique (Z scan) distinguishing the index variations due to the temperature gradient and the mass gradients. A phenomenological framework allowing for coupled diffusion is developed in order to analyze thermodiffusion in multicomponent systems. An observable parameter relating to the mass gradients is found to exhibit a sharp change around the critical micellar concentration, and thus may be used to detect it. The change in the slope is due to the markedly different values of the Soret coefficients of the surfactant and the micelles. The difference in the Soret coefficients is due to the fact that the micellization process reduces the energy of interaction of the ball of amphiphilic molecules with the solvent.
Resumo:
In this paper we investigate the dynamic properties of the minimal Bell-Lavis (BL) water model and their relation to the thermodynamic anomalies. The BL model is defined on a triangular lattice in which water molecules are represented by particles with three symmetric bonding arms interacting through van der Waals and hydrogen bonds. We have studied the model diffusivity in different regions of the phase diagram through Monte Carlo simulations. Our results show that the model displays a region of anomalous diffusion which lies inside the region of anomalous density, englobed by the line of temperatures of maximum density. Further, we have found that the diffusivity undergoes a dynamic transition which may be classified as fragile-to-strong transition at the critical line only at low pressures. At higher densities, no dynamic transition is seen on crossing the critical line. Thus evidence from this study is that relation of dynamic transitions to criticality may be discarded. (C) 2010 American Institute of Physics. [doi:10.1063/1.3479001]
Resumo:
Hard-scattered parton probes produced in collisions of large nuclei indicate large partonic energy loss, possibly with collective produced-medium response to the lost energy. We present measurements of pi(0) trigger particles at transverse momenta p(T)(t) = 4-12 GeV/c and associated charged hadrons (p(T)(a) = 0.5-7 GeV/c) vs relative azimuthal angle Delta phi in Au + Au and p + p collisions at root s(NN) = 200 GeV. The Au + Au distribution at low p(T)(a), whose shape has been interpreted as a medium effect, is modified for p(T)(t) < 7 GeV/c. At higher p(T)(t), the data are consistent with unmodified or very weakly modified shapes, even for the lowest measured p(T)(a), which quantitatively challenges some medium response models. The associated yield of hadrons opposing the trigger particle in Au + Au relative to p + p (I(AA)) is suppressed at high p(T) (I(AA) approximate to 0.35-0.5), but less than for inclusive suppression (R(AA) approximate to 0.2).
Resumo:
The Jensen theorem is used to derive inequalities for semiclassical tunneling probabilities for systems involving several degrees of freedom. These Jensen inequalities are used to discuss several aspects of sub-barrier heavy-ion fusion reactions. The inequality hinges on general convexity properties of the tunneling coefficient calculated with the classical action in the classically forbidden region.
Resumo:
We develop a combined hydro-kinetic approach which incorporates a hydrodynamical expansion of the systems formed in A + A collisions and their dynamical decoupling described by escape probabilities. The method corresponds to a generalized relaxation time (tau(rel)) approximation for the Boltzmann equation applied to inhomogeneous expanding systems; at small tau(rel) it also allows one to catch the viscous effects in hadronic component-hadron-resonance gas. We demonstrate how the approximation of sudden freeze-out can be obtained within this dynamical picture of continuous emission and find that hypersurfaces, corresponding to a sharp freeze-out limit, are momentum dependent. The pion m(T) spectra are computed in the developed hydro-kinetic model, and compared with those obtained from ideal hydrodynamics with the Cooper-Frye isothermal prescription. Our results indicate that there does not exist a universal freeze-out temperature for pions with different momenta, and support an earlier decoupling of higher p(T) particles. By performing numerical simulations for various initial conditions and equations of state we identify several characteristic features of the bulk QCD matter evolution preferred in view of the current analysis of heavy ion collisions at RHIC energies.
Resumo:
Identified charged pion, kaon, and proton spectra are used to explore the system size dependence of bulk freeze-out properties in Cu + Cu collisions at root s(NN) = 200 and 62.4 GeV. The data are studied with hydrodynamically motivated blast-wave and statistical model frameworks in order to characterize the freeze-out properties of the system. The dependence of freeze-out parameters on beam energy and collision centrality is discussed. Using the existing results from Au + Au and pp collisions, the dependence of freeze-out parameters on the system size is also explored. This multidimensional systematic study furthers our understanding of the QCD phase diagram revealing the importance of the initial geometrical overlap of the colliding ions. The analysis of Cu + Cu collisions expands the system size dependence studies from Au + Au data with detailed measurements in the smaller system. The systematic trends of the bulk freeze-out properties of charged particles is studied with respect to the total charged particle multiplicity at midrapidity, exploring the influence of initial state effects.
Resumo:
Charged-particle spectra associated with direct photon (gamma(dir)) and pi(0) are measured in p + p and Au + Au collisions at center-of-mass energy root(S)(NN) = 200 GeV with the STAR detector at the Relativistic Heavy Ion Collider. A shower-shape analysis is used to partially discriminate between gamma(dir) and pi(0). Assuming no associated charged particles in the gamma(dir) direction ( near side) and small contribution from fragmentation photons (gamma(frag)), the associated charged-particle yields opposite to gamma(dir) (away side) are extracted. In central Au + Au collisions, the charged-particle yields at midrapidity (vertical bar eta vertical bar < 1) and high transverse momentum (3 < (assoc)(PT) < 16 GeV/c) associated with gamma(dir) and pi(0) (vertical bar eta vertical bar < 0.9, 8 < (trig)(PT) < 16 GeV/c) are suppressed by a factor of 3-5 compared with p + p collisions. The observed suppression of the associated charged particles is similar for gamma(dir) and pi(0) and independent of the gamma(dir) energy within uncertainties. These measurements indicate that, in the kinematic range covered and within our current experimental uncertainties, the parton energy loss shows no sensitivity to the parton initial energy, path length, or color charge.
Resumo:
Balance functions have been measured for charged-particle pairs, identified charged-pion pairs, and identified charged-kaon pairs in Au + Au, d + Au, and p + p collisions at root s(NN) = 200 GeV at the Relativistic Heavy Ion Collider using the STAR detector. These balance functions are presented in terms of relative pseudorapidity, Delta eta, relative rapidity, Delta y, relative azimuthal angle, Delta phi, and invariant relative momentum, q(inv). For charged-particle pairs, the width of the balance function in terms of Delta eta scales smoothly with the number of participating nucleons, while HIJING and UrQMD model calculations show no dependence on centrality or system size. For charged-particle and charged-pion pairs, the balance functions widths in terms of Delta eta and Delta y are narrower in central Au + Au collisions than in peripheral collisions. The width for central collisions is consistent with thermal blast-wave models where the balancing charges are highly correlated in coordinate space at breakup. This strong correlation might be explained by either delayed hadronization or limited diffusion during the reaction. Furthermore, the narrowing trend is consistent with the lower kinetic temperatures inherent to more central collisions. In contrast, the width of the balance function for charged-kaon pairs in terms of Delta y shows little centrality dependence, which may signal a different production mechanism for kaons. The widths of the balance functions for charged pions and kaons in terms of q(inv) narrow in central collisions compared to peripheral collisions, which may be driven by the change in the kinetic temperature.
Resumo:
Parity (P)-odd domains, corresponding to nontrivial topological solutions of the QCD vacuum, might be created during relativistic heavy-ion collisions. These domains are predicted to lead to charge separation of quarks along the orbital momentum of the system created in noncentral collisions. To study this effect, we investigate a three-particle mixed-harmonics azimuthal correlator which is a P-even observable, but directly sensitive to the charge-separation effect. We report measurements of this observable using the STAR detector in Au + Au and Cu + Cu collisions at root s(NN) = 200 and 62 GeV. The results are presented as a function of collision centrality, particle separation in rapidity, and particle transverse momentum. A signal consistent with several of the theoretical expectations is detected in all four data sets. We compare our results to the predictions of existing event generators and discuss in detail possible contributions from other effects that are not related to P violation.
Resumo:
We present a measurement of pi(+)pi(-)pi(+)pi(-) photonuclear production in ultraperipheral Au-Au collisions at root s(NN) = 200 GeV from the STAR experiment. The pi(+)pi(-)pi(+)pi(-) final states are observed at low transverse momentum and are accompanied by mutual nuclear excitation of the beam particles. The strong enhancement of the production cross section at low transverse momentum is consistent with coherent photoproduction. The pi(+)pi(-)pi(+)pi(-) invariant mass spectrum of the coherent events exhibits a broad peak around 1540 +/- 40 MeV/c(2) with a width of 570 +/- 60 MeV/c(2), in agreement with the photoproduction data for the rho(0)(1700). We do not observe a corresponding peak in the pi(+)pi(-) final state and measure an upper limit for the ratio of the branching fractions of the rho(0)(1700) to pi(+)pi(-) and pi(+)pi(-)pi(+)pi(-) of 2.5% at 90% confidence level. The ratio of rho(0)(1700) and rho(0)(770) coherent production cross sections is measured to be 13.4 +/- 0.8(stat.) +/- 4.4(syst.)%.