208 resultados para Arsenic -- Toxicology
Sub-Chronic Exposure to Methylmercury at Low Levels Decreases Butyrylcholinesterase Activity in Rats
Resumo:
In this study, we examined the effects of low levels and sub-chronic exposure to methylmercury (MeHg) on butyrylcholinesterase (BuChE) activity in rats. Moreover, we examined the relationship between BuChE activity and oxidative stress biomarkers [delta-aminolevulinic acid dehydratase (delta-ALA-D) and malondialdehyde levels (MDA)] in the same animals. Rats were separated into three groups (eight animals per group): (Group I) received water by gavage; (Group II) received MeHg (30 mu g/kg/day) by gavage; (Group III) received MeHg (100 mu g/kg/day). The time of exposure was 90 days. BuChE and ALA-D activities were measured in serum and blood, respectively; whereas MDA levels were measured in plasma. We found BuChE and ALA-D activities decreased in groups II and III compared to the control group. Moreover, we found an interesting negative correlation between plasmatic BuChE activity and MDA (r = -0.85; p < 0.01) and a positive correlation between plasmatic BuChE activity and ALA-D activities (r = 0.78; p < 0.01), thus suggesting a possible relationship between oxidative damage promoted by MeHg exposure and the decrease of BuChE activity. In conclusion, long-term exposure to low doses of MeHg decreases plasmatic BuChE activity. Moreover, the decrease in the enzyme is strongly correlated with the oxidative stress promoted by the metal exposure. This preliminary finding highlights a possible mechanism for MeHg to reduce BuChE activity in plasma. Additionally, this enzyme could be an auxiliary biomarker on the evaluation of MeHg exposure.
Resumo:
Mercury (Hg) exposure causes health problems that may result from increased oxidative stress and matrix metalloproteinase (MMP) levels. We investigated whether there is an association between the circulating levels of MMP-2, MMP-9, their endogenous inhibitors (the tissue inhibitors of metalloproteinases; TIMPs) and the circulating Hg levels in 159 subjects environmentally exposed to Hg. Blood and plasma Hg were determined by inductively coupled plasma-mass spectrometry (ICP-MS). MMP and TIMP concentrations were measured in plasma samples by gelatin zymography and ELISA respectively. Thiobarbituric acid-reactive species (TBARS) were measured in plasma to assess oxidative stress. Selenium (Se) levels were determined by ICP-MS because it is an antioxidant. The relations between bioindicators of Hg and the metalloproteinases levels were examined using multivariate regression models. While we found no relation between blood or plasma Hg and MMP-9, plasma Hg levels were negatively associated with TIMP-1 and TIMP-2 levels, and thereby with increasing MMP-9/TIMP-1 and MMP-2/TIMP-2 ratios, thus indicating a positive association between plasma Hg and circulating net MMP-9 and MMP-2 activities. These findings provide a new insight into the possible biological mechanisms of Hg toxicity, particularly in cardiovascular diseases.
Resumo:
Increased risk of hypertension after methylmercury (MeHg) exposure has been suggested. However, the underlying mechanisms are not well explored. In this paper, we have analyzed whether sub-chronic exposure to MeHg increases systolic blood pressure even at very low levels. In addition, we analyzed if the methylmercury-induced hypertension is associated with a decreased plasmatic nitric oxide levels and with a dysregulation of the activities of the antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT), as well as the levels of MDA and glutathione. For this study, Wistar rats were treated with methylmercury chloride (100 mu g/kg per day) or vehicle. Total treatment time was 100 days. Malondialdehyde (MDA) and circulating NOx levels and superoxide dismutase (SOD) and catalase (CAT) activities were determined in plasma, whereas glutathione levels were determined in erythrocytes. Our results show that long-term treatment at a low level of MeHg affected systolic blood pressure, increasing and reducing the levels of plasmatic MDA and NOx, respectively. However, the activity of SOD did not decrease in the MeHg exposed group when compared to the control. We found a negative correlation between plasmatic nitrite/nitrate (NOx) levels and systolic blood pressure (r = -0.67; P = 0.001), and a positive correlation between MDA and systolic blood pressure (r = 0.61; P = 0.03), thus suggesting increased inhibition of NO formation with the increase of hypertension. In conclusion, long-term exposure to a low dose of MeHg increases the systolic pressure and is associated, at least in part, with increased production of ROS as judged by increased production of malondialdehyde and depressed NO availability.
Resumo:
Pregnant women are one of the most sensitive populations to the toxic effects associated with lead (Pb) exposure. These effects are primarily associated with plasma Pb (Pb-P), which reflects the most rapidly exchangeable fraction of Pb in the bloodstream, and elevated maternal Pb-P may be more relevant to foetal Pb exposure than whole blood Pb (Pb-B). We investigated how pregnancy affects Pb-B, Pb-P and %Pb-P/Pb-B ratios without the influence of the 6-aminolevulinic acid dehydratase (ALAD) G177C polymorphism, which is a major genetic factor influencing Pb-B, Pb-P and %Pb-P/Pb-B ratios. Genotypes for the ALAD G177C polymorphism were determined by PCR and restriction fragment length digestion in nine pregnant and 20 non-pregnant women, aged 18-33, environmentally exposed to Pb. Here, we included only women with ALAD 1-1 genotype. Pb-P and Pb-B were determined by inductively coupled plasma mass spectrometry and by graphite furnace atomic absorption spectrometry, respectively. We found no differences in Pb-B (P > 0.05). However, pregnant women had a 2-fold increase in Pb-P and a 3-fold increase in %Pb-P/Pb-B (both P < 0.01) compared to nonpregnant women. These alterations in Pb concentrations associated with pregnancy are similar to those associated with different ALAD gene variants. We can now better appreciate how pregnancy affects foetal exposure to Pb without the influence of this important genetic factor.
Resumo:
Genetic factors influence whole blood lead (Pb-B) concentrations in lead exposed subjects. This study aimed at examining the combined effects (haplotype analysis) of three polymorphisms (BsmI, ApaI and FokI) in vitamin D receptor (VDR) gene on Pb-B and on the concentrations of lead in plasma (Pb-P), which is more relevant to lead toxicity, in 150 environmentally exposed subjects. Genotypes were determined by RFLP, and Pb-P and Pb-B were determined by inductively coupled plasma mass spectrometry and by graphite furnace atomic absorption spectrometry, respectively. Subjects with the bb (BsmI polymorphism) or ff (FokI polymorphism) genotypes have lower B-Pb than subjects in the other genotype groups. Subjects with the aa (ApaI polymorphism) or ff genotypes have lower P-Pb than subjects in the other genotype groups. Lower Pb-P, Pb-B, and %Pb-P/Pb-B levels were found in subjects with the haplotype combining the a, b, and f alleles for the ApaI, BsmI, and FokI polymorphisms, respectively, compared with the other haplotype groups, thus suggesting that VDR haplotypes modulate the circulating levels of lead in exposed subjects.
Resumo:
Aim of the study was to find out whether consumption of quercetin (QC), an abundant flavonoid in the human diet, protects against DNA damage caused by exposure to organic mercury. Therefore, rats were treated orally with methylmercury (MeHg) and the flavonoid with doses that reflect the human exposure. The animals received MeHg (30 mu g/kg/bw/day), QC (0.5-50 mg/kg/bw/day), or combinations of both over 45 days. Subsequently, the glutathione levels (GSH) and the activities of glutathione peroxidase (GPx) and catalase (CAT) were determined, and DNA damage was measured in hepatocytes and peripheral leukocytes in single cell gel electrophoresis assays. MeHg decreased the concentration of GSH and the activity of GPx by 17 and 12%, respectively and caused DNA damage to liver and blood cells, while with QC no such effects were seen. When the flavonoid was given in combination with MeHg, the intermediate and the highest concentrations (5.0 and 50.0 mg/kg/bw/day) were found to cause DNA protection; DNA migration was reduced by 54 and 65% in the hepatocytes and by 27 and 36% in the leukocytes; furthermore, the reduction in GSH and GPx levels caused by MeHg treatment was restored. In summary, our results indicate that consumption of QC-rich foods may protect Hg-exposed humans against the adverse health effects of the metal.
Resumo:
In this study we investigated the effects of subacute exposure to methylmercury (MeHg) on male reproductive functions in rats by means of determination of alterations in structural and functional parameters. Adult male Wistar rats received 0, 0.5, 1.0 or 3.0 mg/kg/body weight/day orally, daily MeHg for 14 days. Sperm motility, the relative sperm count and transit time in the caput/corpus epididymis, were all reduced at all doses. The lowest dose increased the number of sperm head abnormalities; daily sperm production was elevated at the intermediate dose; while at the highest dose there was a decrease in serum testosterone levels and a rise in mercury (Hg) content in reproductive organs, liver and kidneys. In conclusion, MeHg exposure produced damages on male reproductive functions which may be attributed, at least in part, to the reduction in serum testosterone levels. These consequences could potentially result in infertility in rats. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The present study evaluates a possible protective effect of fish oil against oxidative damage promoted by methylmercury (MeHg) in sub-chronically exposed rats. Reduced glutathione peroxidase and catalase enzyme activity and reduced glutathione levels were observed in MeHg-exposed animals compared to controls. Methylmercury exposure was also associated with DNA damage. Administration of fish oil to the methylmercury-exposed animals did not ameliorate enzyme activity or glutathione levels. On the other hand, a significant DNA protective effect (about 30%) was observed with fish oil treatment. There were no differences in the total mercury concentration in rat liver, kidney, heart or brain after MeHg administration with or without fish oil co-administration. Histopathological analyses showed a significant leukocyte infiltration in rat tissues after MeHg exposure, but this effect was significantly reduced after co-administration of fish oil. Taken together, our findings demonstrate oxidative damage even after low-level MeHg exposure and the protective effect of fish oil. This protection seems not to be related to antioxidant defenses or mercury re-distribution in rat tissues. It is probably due to the anti-inflammatory effects of fish oil. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
In this work, a new weakly hemorrhagic metalloproteinase (BthMP) was purified from Bothrops moojeni snake venom. This enzyme was homogeneous by native and SDS-PAGE. It showed a polypeptide chain of 23.5 kDa, pI=7.1, and N-terminal blocked. BthMP is comprised of high proteolytic activity on casein, fibrin and bovine fibrinogen, with no coagulating, esterase or phospholipase A(2) activities; it was inhibited by EDTA, EGTA and 1,10-phenanthroline and maintained its activity on pH from 7.0 to 9.0 and temperature from 5-40 degrees C. Assays with metal ions showed that Ca(2+) is an activator, whereas Zn(2+) and Hg(2+) inhibited about 50 and 80% of its activity, respectively. The edema evidenced the important role of the toxin in the inflammatory activity of the venom. BthMP also caused unclotting, and provoked histological alterations in the gastrocnemius muscle of mice inducing hemorrhage, necrosis and leukocytic infiltrate. The molecular mass and the inhibition assays suggest that the metal loproteinase BthMP belongs to class P-I of SVMPs. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this work was to investigate the involvement of caspases in apoptosis induced by L-amino acid oxidase isolated from Bothrops atrox snake venom. The isolation of LAAO involved three chromatographic steps: molecular exclusion on a G-75 column; ion exchange column by HPLC and affinity chromatography on a Lentil Lectin column. SDS-PAGE was used to confirm the expected high purity level of BatroxLAA0. It is a glycoprotein with 12% sugar and an acidic character, as confirmed by its amino acid composition, rich in ""Asp and Glu"" residues. It displays high specificity toward hydrophobic L-amino acids. The N-terminal amino acid sequence and internal peptide sequences showed close structural homology to other snake venom LAAOs. This enzyme induces in vitro platelet aggregation, which may be due to H(2)O(2) production by LAAOs, since the addition of catalase completely inhibited the aggregation effect. It also showed cytotoxicity towards several cancer cell lines: HL60, Jurkat, B16F10 and PC12. The cytotoxicity activity was abolished by catalase. A fluorescence microscopy evaluation revealed a significant increase in the apoptotic index of these cells after BatroxLAAO treatment. This observation was confirmed by phosphatidyl serine exposure and activation of caspases. BatroxLAAO is a protein with various biological functions that can be involved in envenomation. Further investigations of its function will contribute to toxicology advances. Published by Elsevier Inc.
Resumo:
Vitamin B(6) has shown to be a potentially effective antioxidant agent, and dietary antioxidants are also frequently valuable inhibitors of clastogenesis and carcinogenesis. The purpose of the present work was to study the clastogenicity of different doses of vitamin B6 and to examine the possible modulating effect of this vitamin on chromosomal damage induced by the antitumor agent doxorubicin in Wistar rats. Experimental groups were set up for pre-and simultaneous treatment with vitamin B6 alone or in combination with DXR. The data obtained from administering diVerent doses of vitamin B(6) (12.5-100 mg/kg b. w.) showed no signigicant increase in total chromosomal aberrations when compared with the negative control. The administration of two doses of 25 mg/kg b. w. or one dose of 50 mg/kg b. w. of vitamin B6 before doxorubicin injection seemed equally effective in protecting cells against doxorubicin clastogenicity. The anticlastogenic effect of vitamin B(6) on DXR-induced chromosomal damage could be ascribed to its antioxidant properties. Vitamin B6 was not clastogenic or cytotoxic in rat bone marrow cells and it plays a role in inhibiting the clastogenicity induced by DXR.
Resumo:
The curcumin`s effect given orally by gavage in single- or multiple-dose regimens on methemoglobinemia induced by dapsone (DDS) was investigated in male Wistar rats. In the single-dose regimen, groups of 10 rats received either vehicle alone, or curcumin at 0.1, 1.0, 10, or 30 mg/kg body weight (bw), or curcumin at 0.02, 0.1, 1, 10, or 30 mg/kg bw plus DDS at 40 mg/kg bw, intraperitoneally (i.p.), 2 hours after. In the multiple-dose regimen, groups of 10 rats received either vehicle alone, or curcumin at 0.1, 1.0, 10, or 30 mg/kg bw for 5 days, with or without DDS (40 mg/kg bw, i.p.) 2 hours after on the fifth day. In both regimens, further groups of 10 rats were given DDS alone (positive controls) or normal saline (negative controls) i.p. Single-dose treatment with curcumin at 0.02 and 0.1 mg/kg bw significantly reduced DDS-induced methemoglobin formation, while the higher doses showed a pro-oxidant effect, significantly increasing DDS-induced methemoglobinemia. In the multiple-dose regimen, treatment with curcumin at 0.1 mg/kg bw significantly reduced DDS-induced methemoglobin formation, but the higher doses were without significant effect compared to DDS alone. It is concluded that curcumin at low doses mitigates methemoglobinemia induced by dapsone in rats, both in single- and multiple-dose regimens. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The aqueous extract prepared from Schizolobium parahyba (Sp) leaves, a native plant from Atlantic Forest (Brazil), was tested to analyse its ability to inhibit some biological and enzymatic activities induced by Bothrops alternatus (BaltCV) and Bothrops moojeni (BmooCV) snake venoms. Sp inhibited 100% of lethality, blood incoagulability, haemorrhagic and indirect haemolytic activities at a 1:10 ratio (venom/extract, w/w), as well as coagulant activity at a 1:5 ratio (venom/extract, w/w) induced by both venoms. BaltCV fibrinogenolytic activity was also neutralized by Sp at a 1:10 ratio, resulting in total protection of fibrinogen B beta chain and partial protection of A alpha chain. Interaction tests have demonstrated that, at certain extract/proteins ratios, Sp precipitates proteins non-specifically suggesting the presence of tannins, which are very likely responsible for the excellent inhibiting effects of the analysed ophidian activities. Sp aqueous extract chromatography on Sephadex LH-20 was carried out aiming at the separation of these compounds that mask the obtained results. Thus, the fractionation of Sp resulted in three fractions: F1 (methanolic fraction); F2 (methanol:water fraction, 1:1 v/v); and F3 (aqueous fraction). These fractions were analysed for their ability to inhibit the BaltCV fibrinogenolytic activity. F1 inhibited 100% the venom fibrinogenolytic activity without presenting protein precipitation effect; F2 showed only partial inhibition of this venom activity. Finally, F3 did not inhibit fibrinogen proteolysis, but presented strong protein precipitating action. We conclude that Sp aqueous extract, together with tannins, also contains other compounds that can display specific inhibitory activity against snake venom toxins.
Resumo:
Methionine is a component of one-carbon metabolism and a precursor of S-adenosylmethionine (SAM), the methyl donor for DNA methylation. When methionine intake is high, an increase of S-adenosylmethionine (SAM) is expected. DNA methyltransferases convert SAM to S-adenosylhomocysteine (SAH). A high intracellular SAH concentration could inhibit the activity of DNA methyltransferases. Therefore, high methionine ingestion could induce DNA damage and change the methylation pattern of tumor suppressor genes. This study investigated the genotoxicity of a methionine-supplemented diet. It also investigated the diet`s effects on glutathione levels, SAM and SAH concentrations and the gene methylation pattern of p53. Wistar rats received either a methionine-supplemented diet (2% methionine) or a control diet (0.3% methionine) for six weeks. The methionine-supplemented diet was neither genotoxic nor antigenotoxic to kidney cells, as assessed by the comet assay. However, the methionine-supplemented diet restored the renal glutathione depletion induced by doxorubicin. This fact may be explained by the transsulfuration pathway, which converts methionine to glutathione in the kidney. Methionine supplementation increased the renal concentration of SAH without changing the SAM/SAH ratio. This unchanged profile was also observed for DNA methylation at the promoter region of the p53 gene. Further studies are necessary to elucidate this diet`s effects on genomic stability and DNA methylation. (C) 2011 Elsevier ay. All rights reserved.
Resumo:
A proteinase, named BmooMP alpha-I, from the venom of Bothrops moojeni, was purified by DEAE-Sephacel, Sephadex G-75 and heparin-agarose column chromatography. The enzyme was purified to homogeneity as judged by its migration profile in SDS-PAGE stained with coomassie blue, and showed a molecular mass of about 24.5 kDa. Its complete cDNA was obtained by RT-PCR and the 615 bp codified for a mature protein of 205 amino acid residues. The multiple alignment of its deduced amino acid sequence and those of other snake venom metalloproteinases showed a high structural similarly, mainly among class P-IB proteases. The enzyme cleaves the A alpha-chain of fibrinogen first, followed by the B beta-chain, and shows no effects on the gamma-chain. On fibrin, the enzyme hydrolyzed only the beta-chain, leaving the gamma-dimer apparently untouched. It was devoid of phospholipase A(2), hemorrhagic and thrombin-like activities. Like many venom enzymes, it is stable at pH values between 4 and 10 and stable at 70 degrees C for 15 min. The inhibitory effects of EDTA on the fibrinogenolytic activity suggest that BmooMP alpha-I is a metalloproteinase and inhibition by beta-mercaptoethanol revealed the important role of the disulfide bonds in the stabilization of the native structure. Aprotinin and benzamidine, specific serine proteinase inhibitors, had no effect on BmooMP alpha-I activity. Since the BmooMP alpha-I enzyme was found to cause defibrinogenation when administered i.p. on mice, it is expected that it may be of medical interest as a therapeutic agent in the treatment and prevention of arterial thrombosis. (C) 2007 Elsevier Ltd. All rights reserved.