158 resultados para Anaerobic respiration
Resumo:
The presence of sexual hormones (female estrogens) was assessed in sediments of a mangrove located in the urban region of southern Brazil. The estrogens are involved in human sexual reproduction. They act as the chemical messengers, and they are classified as natural and synthetic. The estrogens inputs in the environment are from treated and untreated sewage. The presence of estrogens in sewage is excretion from the female due to natural production and use of contraceptives (synthetic estrogens). With the indiscriminate release of sewage into the environment, estrogens can be found in rivers, lakes, and even in oceans. In this work, the presence of estrone (E1), 17-beta-estradiol (E2), and 17-alpha-ethynilestradiol (EE2) in eight sedimentary stations in Itacorubi mangrove located on Santa Catarina Island, south Brazil, was investigated. Historically, the Itacorubi mangrove has been impacted by anthropogenic activities because the mangrove is inserted in the urban area of the Florianopolis. The estrogen EE2, used as contraceptive, had the highest concentration in mangrove sediment, 129.75 +/- 3.89 ng/g. E2 was also found, with its concentration ranging from 0.90 +/- 0.03 to 39.77 +/- 1.19 ng/g. Following the mechanism, under aerobic or anaerobic conditions, E2 will first be oxidized to E1, which is further oxidized to unknown metabolites and finally to CO(2) and water (mineralized). EE2 is oxidized to unknown metabolites and also finally mineralized. Theoretically, under anaerobic conditions, EE2 can be reduced to E1 even in environments such as mangrove which is essentially anaerobic.
Resumo:
Exercise intensity is a key parameter for exercise prescription but the optimal range for individuals with high cardiorespiratory fitness is unknown. The aims of this study were (1) to determine optimal heart rate ranges for men with high cardiorespiratory fitness based on percentages of maximal oxygen consumption (%VO(2max)) and reserve oxygen consumption (%VO(2reserve)) corresponding to the ventilatory threshold and respiratory compensation point, and ( 2) to verify the effect of advancing age on the exercise intensities. Maximal cardiorespiratory testing was performed on 210 trained men. Linear regression equations were calculated using paired data points between percentage of maximal heart rate (%HR(max)) and %VO(2max) and between percentage of heart rate reserve (%HRR) and %VO(2reserve) attained at each minute during the test. Values of %VO(2max) and %VO(2reserve) at the ventilatory threshold and respiratory compensation point were used to calculate the corresponding values of %HRmax and %HRR, respectively. The ranges of exercise intensity in relation to the ventilatory threshold and respiratory compensation point were achieved at 78-93% of HR(max) and 70-93% of HRR, respectively. Although absolute heart rate decreased with advancing age, there were no age-related differences in %HR(max) and %HRR at the ventilatory thresholds. Thus, in men with high cardiorespiratory fitness, the ranges of exercise intensity based on %HR(max) and %HRR regarding ventilatory threshold were 78-93% and 70-93% respectively, and were not influenced by advancing age.
Resumo:
ARTIOLI, G. G., B. GUALANO, A. SMITH, J. STOUT, and A. H. LANCHA, JR. Role of beta-Alanine Supplementation on Muscle Carnosine and Exercise Performance. Med. Sci. Sports Exerc., Vol. 42, No. 6, pp. 1162-1173, 2010. In this narrative review, we present and discuss the current knowledge available on carnosine and beta-alanine metabolism as well as the effects of beta-alanine supplementation on exercise performance. Intramuscular acidosis has been attributed to be one of the main causes of fatigue during intense exercise. Carnosine has been shown to play a significant role in muscle pH regulation. Carnosine is synthesized in skeletal muscle from the amino acids L-histidine and beta-alanine. The rate-limiting factor of carnosine synthesis is beta-alanine availability. Supplementation with beta-alanine has been shown to increase muscle carnosine content and therefore total muscle buffer capacity, with the potential to elicit improvements in physical performance during high-intensity exercise. Studies on beta-alanine supplementation and exercise performance have demonstrated improvements in performance during multiple bouts of high-intensity exercise and in single bouts of exercise lasting more than 60 s. Similarly, beta-alanine supplementation has been shown to delay the onset of neuromuscular fatigue. Although beta-alanine does not improve maximal strength or (V) over dotO(2max), some aspects of endurance performance, such as anaerobic threshold and time to exhaustion, can be enhanced. Symptoms of paresthesia may be observed if a single dose higher than 800 mg is ingested. The symptoms, however, are transient and related to the increase in plasma concentration. They can be prevented by using controlled release capsules and smaller dosing strategies. No important side effect was related to the use of this amino acid so far. In conclusion, beta-alanine supplementation seems to be a safe nutritional strategy capable of improving high-intensity anaerobic performance.
Resumo:
The purpose of this study was to test the hypothesis that in obese children: 1) Ventilatory efficiency (VentE) is decreased during graded exercise; and 2) Weight loss through diet alone (D) improves VentE, and 3) diet associated with exercise training (DET) leads to greater improvement in VentE than by D. Thirty-eight obese children (10 +/- 0.2 years; BMI > 95(th) percentile) were randomly divided into two Study groups: D (n=17; BMI = 30 +/- 1 kg/m(2)) and DET (n = 21; 28 +/- 1 kg/m(2)). Ten lean children were included in a control group (10 +/- 0.3 years; 17 +/- 0.5 kg/m(2)). All children performed maximal treadmill testing with respiratory gas analysis (breath-by-breath) to determine the ventilatory anaerobic threshold (VAT) and peak oxygen consumption (VO(2) peak). VentE was determined by the VE/VCO(2) method at VAT. Obese children showed lower VO(2) peak and lower VentE than controls (p < 0.05). After interventions, all obese children reduced body weight (p < 0.05). D group did not improve in terms of VO(2) peak or VentE (p > 0.05). In contrast, the DET group showed increased VO(2) peak (p = 0.01) and improved VentE(Delta VE/VCO(2) = -6.1 +/- 0.9; p = 0.01). VentE is decreased in obese children, where weight loss by means of DET, but not D alone, improves VentE and cardiorespiratory fitness during graded exercise.
Resumo:
Pires, FO, Hammond, J, Lima-Silva, AE, Bertuzzi, RCM, and Kiss, MAPDM. Ventilation behavior during upper-body incremental exercise. J Strength Cond Res 25(1): 225-230, 2011-This study tested the ventilation (V(E)) behavior during upper-body incremental exercise by mathematical models that calculate 1 or 2 thresholds and compared the thresholds identified by mathematical models with V-slope, ventilatory equivalent for oxygen uptake (V(E)/(V) over dotO(2)), and ventilatory equivalent for carbon dioxide uptake (V(E)/(V) over dotCO(2)). Fourteen rock climbers underwent an upper-body incremental test on a cycle ergometer with increases of approximately 20 W.min(-1) until exhaustion at a cranking frequency of approximately 90 rpm. The V(E) data were smoothed to 10-second averages for V(E) time plotting. The bisegmental and the 3-segmental linear regression models were calculated from 1 or 2 intercepts that best shared the V(E) curve in 2 or 3 linear segments. The ventilatory threshold(s) was determined mathematically by the intercept(s) obtained by bisegmental and 3-segmental models, by V-slope model, or visually by V(E)/(V) over dotO(2) and V(E)/(V) over dotCO(2). There was no difference between bisegmental (mean square error [MSE] = 35.3 +/- 32.7 l.min(-1)) and 3-segmental (MSE = 44.9 +/- 47.8 l.min(-1)) models in fitted data. There was no difference between ventilatory threshold identified by the bisegmental (28.2 +/- 6.8 ml.kg(-1).min(-1)) and second ventilatory threshold identified by the 3-segmental (30.0 +/- 5.1 ml.kg(-1).min(-1)), V(E)/(V) over dotO(2) (28.8 +/- 5.5 ml.kg(-1).min(-1)), or V-slope (28.5 +/- 5.6 ml.kg(-1).min(-1)). However, the first ventilatory threshold identified by 3-segmental (23.1 +/- 4.9 ml.kg(-1).min(-1)) or by VE/(V) over dotO(2) (24.9 +/- 4.4 ml.kg(-1).min(-1)) was different from these 4. The V(E) behavior during upper-body exercise tends to show only 1 ventilatory threshold. These findings have practical implications because this point is frequently used for aerobic training prescription in healthy subjects, athletes, and in elderly or diseased populations. The ventilatory threshold identified by V(E) curve should be used for aerobic training prescription in healthy subjects and athletes.
Resumo:
The objective of this study was to propose an alternative method (MAOD(ALT)) to estimate the maximal accumulated oxygen deficit (MAOD) using only one supramaximal exhaustive test. Nine participants performed the following tests: (a) a maximal incremental exercise test, (b) six submaximal constant workload tests, and (c) a supramaximal constant workload test. Traditional MAOD was determined by calculating the difference between predicted O(2) demand and accumulated O(2) uptake during the supramaximal test. MAOD(ALT) was established by summing the fast component of excess post-exercise oxygen consumption and the O(2) equivalent for energy provided by blood lactate accumulation, both of which were measured during the supramaximal test. There was no significant difference between MAOD (2.82 +/- 0.45 L) and MAOD(ALT) (2.77 +/- 0.37 L) (p = 0.60). The correlation between MAOD and MAOD(ALT) was also high (r = 0.78; p = 0.014). These data indicate that the MAOD(ALT) can be used to estimate the MAOD.
Resumo:
The aim of this study was to test if the critical power model can be used to determine the critical rest interval (CRI) between vertical jumps. Ten males performed intermittent countermovement jumps on a force platform with different resting periods (4.1 +/- 0.3 s, 5.0 +/- 0.4 s, 5.9 +/- 0.6 s). Jump trials were interrupted when participants could no longer maintain 95% of their maximal jump height. After interruption, number of jumps, total exercise duration and total external work were computed. Time to exhaustion (s) and total external work (J) were used to solve the equation Work = a + b . time. The CRI (corresponding to the shortest resting interval that allowed jump height to be maintained for a long time without fatigue) was determined dividing the average external work needed to jump at a fixed height (J) by b parameter (J/s). in the final session, participants jumped at their calculated CRI. A high coefficient of determination (0.995 +/- 0.007) and the CRI (7.5 +/- 1.6 s) were obtained. In addition, the longer the resting period, the greater the number of jumps (44 13, 71 28, 105 30, 169 53 jumps; p<0.0001), time to exhaustion (179 +/- 50, 351 +/- 120, 610 +/- 141, 1,282 +/- 417 s; p<0.0001) and total external work (28.0 +/- 8.3, 45.0 +/- 16.6, 67.6 +/- 17.8, 111.9 +/- 34.6 kJ; p<0.0001). Therefore, the critical power model may be an alternative approach to determine the CRI during intermittent vertical jumps.
Resumo:
This study investigated the energy system contributions of rowers in three different conditions: rowing on an ergometer without and with the slide and rowing in the water. For this purpose, eight rowers were submitted to 2,000 m race simulations in each of the situations defined above. The fractions of the aerobic (W(AER)), anaerobic alactic (W(PCR)) and anaerobic lactic (W([La-])) systems were calculated based on the oxygen uptake, the fast component of excess post-exercise oxygen uptake and changes in net blood lactate, respectively. In the water, the metabolic work was significantly higher [(851 (82) kJ] than during both ergometer [674 (60) kJ] and ergometer with slide [663 (65) kJ] (P <= 0.05). The time in the water [515 (11) s] was higher (P < 0.001) than in the ergometers with [398 (10) s] and without the slide [402 (15) s], resulting in no difference when relative energy expenditure was considered: in the water [99 (9) kJ min(-1)], ergometer without the slide [99.6 (9) kJ min(-1)] and ergometer with the slide [100.2 (9.6) kJ min(-1)]. The respective contributions of the WAER, WPCR and W[La-] systems were water = 87 (2), 7 (2) and 6 (2)%, ergometer = 84 (2), 7 (2) and 9 (2)%, and ergometer with the slide = 84 (2), 7 (2) and 9 (1)%. (V) over dotO(2), HR and lactate were not different among conditions. These results seem to indicate that the ergometer braking system simulates conditions of a bigger and faster boat and not a single scull. Probably, a 2,500 m test should be used to properly simulate in the water single-scull race.
Resumo:
Objective. - The objective of this work was to verify if there was a difference in throwing speed performance between heavier and lighter weight categories in judo. Methods and subjects. - Sixteen (16) judoists 18 +/- 3 years old, eight considered in the lightweight category (< 66 kg) and eight considered in the heavyweight (> 73 kg) category, participated in the study after signing a term of informed consent. A force-velocity test was used to determine the anaerobic power, strength, and pedal speed for each subject. In addition, three trials of Nage-komi exercise, each comprised of a set of Osoto-gari (15s), Uchi-mata (15s) and Seoi-nage (15s) throws were performed by each subject to ascertain throwing speed. Throws within the sets were intersected by one period of three minutes passive rest, while the trials were separated by one period of 10 minutes passive rest. Heart rate and the greatest number of throws within each set were measured for three trials. One-way analysis of variance (Anova) was used to compare the number of throws between the two weight categories and a ""Student"" test when the difference was significant. A correlation was used to examine the link between the different parameters. Results. - The force-velocity test did not show a significant difference in pedal speed between the two categories. However, there was a significant difference between the two categories when throwing speed was measured by the number of throws (p < 0.05) executed during the Seoi-nage (p < 0.01) and Uchi-mata (p <0.05) techniques. There was however, no significant difference between the two categories in Osoto-gari technique. Conclusion. - The throwing speed of judoists represented by the number of throws is significantly different between the two categories. The lighter category has more speed than the heavier category using the arm technique (Seoi-nage), while the heavier category has more speed using the leg technique with half turn of the attacker`s body (Uchi-mata). As a result, throwing speed is related to the type of technique used and not weight category. (C) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
Miarka, B, Del Vecchio, FB, and Franchini, E. Acute effects and postactivation potentiation in the special judo fitness test. J Strength Cond Res 25(2): 427-431, 2011-The purpose of this study was to compare the acute short-term effects of (1) plyometric exercise, (2) combined strength and plyometric exercise (contrast), and (3) maximum strength performance in the Special Judo Fitness Test (SJFT). Eight male judo athletes (mean +/- SD, age, 19 +/- 1 years; body mass, 60.4 +/- 5 kg; height, 168.3 +/- 5.4 cm) took part in this study. Four different sessions were completed; each session had 1 type of intervention: (a) SJFT control, (b) plyometric exercises + SJFT, (c) maximum strength + SJFT, and (d) contrast + SJFT. The following variables were quantified: throws performed during series A, B, and C; total number of throws; heart rate immediately and 1 minute after the test; and test index. Significant differences were found in the number of throws during series A: the plyometric exercise (6.4 +/- 0.5 throws) was superior (p < 0.05) to the control condition (5.6 +/- 0.5 throws). Heart rate 1 minute after the SJFT was higher (p < 0.01) during the plyometric exercise (192 +/- 8 bpm) than during the contrast exercise (184 +/- 9 bpm). The contrast exercise (13.58 +/- 0.72) resulted in better index values than the control (14.67 +/- 1.30) and plyometric exercises (14.51 +/- 0.54). Thus, this study suggests that contrast and plyometric exercises performed before the SJFT can result in improvements in the test index and anaerobic power of judo athletes, respectively.
Resumo:
Negrão M.V, Alves CR, Alves G.B, Pereira A.C, Dias R.G, Laterza M.C, Mota G.F, Oliveira E.M, Bassaneze V, Krieger J.E, Negrão C.E, Rondon M.U.P. Exercise training improves muscle vasodilatation in individuals with T786C polymorphism of endothelial nitric oxide synthase gene. Physiol Genomics 42A: 71-77, 2010. First published July 6, 2010; doi:10.1152/physiolgenomics.00145.2009.-Allele T at promoter region of the eNOS gene has been associated with an increase in coronary disease mortality, suggesting that this allele increases susceptibility for endothelial dysfunction. In contrast, exercise training improves endothelial function. Thus, we hypothesized that: 1) Muscle vasodilatation during exercise is attenuated in individuals homozygous for allele T, and 2) Exercise training improves muscle vasodilatation in response to exercise for TT genotype individuals. From 133 preselected healthy individuals genotyped for the T786C polymorphism, 72 participated in the study: TT (n = 37; age 27 +/- 1 yr) and CT + CC (n = 35; age 26 +/- 1 yr). Forearm blood flow (venous occlusion plethysmography) and blood pressure (oscillometric automatic cuff) were evaluated at rest and during 30% handgrip exercise. Exercise training consisted of three sessions per week for 18 wk, with intensity between anaerobic threshold and respiratory compensation point. Resting forearm vascular conductance (FVC, P = 0.17) and mean blood pressure (P = 0.70) were similar between groups. However, FVC responses during handgrip exercise were significantly lower in TT individuals compared with CT + CC individuals (0.39 +/- 0.12 vs. 1.08 +/- 0.27 units, P = 0.01). Exercise training significantly increased peak VO(2) in both groups, but resting FVC remained unchanged. This intervention significantly increased FVC response to handgrip exercise in TT individuals (P = 0.03), but not in CT + CC individuals (P = 0.49), leading to an equivalent FVC response between TT and CT + CC individuals (1.05 +/- 0.18 vs. 1.59 +/- 0.27 units, P = 0.27). In conclusion, exercise training improves muscle vasodilatation in response to exercise in TT genotype individuals, demonstrating that genetic variants influence the effects of interventions such as exercise training.
Resumo:
Objective. - The aim of this study was to propose a new method that allows for the estimation of critical power (CP) from non-exhaustive tests using ratings of perceived exertion (RPE). Methods. - Twenty-two subjects underwent two practice trials for ergometer and Borg 15-point scale familiarization, and adaptation to severe exhaustive exercise. After then, four exercise bouts were performed on different days for the estimation of CP and anaerobic work capacity (AWC) by linear work-time equation, and CP(15), CP(17), AWC(15) and AWC(17) were estimated using the work and time to attainment of RPE15 and RPE17 based on the Borg 15-point scale. Results. - The CP, CP(15) and CP(17) (170-177W) were not significantly different (P>0.05). However, AWC, AWC(15) and AWC(17) were all different from each other. The correlations between CP(15) and CP(17), with CP were strong (R=0.871 and 0.911, respectively), but the AWC(15) and AWC(17) were not significantly correlated with AWC. Conclusion. - Sub-maximal. RPE responses can be used for the estimation of CP from non-exhaustive exercise protocols. (C) 2009 Elsevier Masson SAS. All rights reserved.
Resumo:
Background and Study Aim: Judo is very physiological demanding sport, but there are no many physical fitness specific tests. One of the most used specific judo tests is the Special Judo Fitness Test (SJFT) proposed by Sterkowicz ( 1995). Although this test has been used by many coaches in different countries no classificatory table was found to classify the judo athletes according to their results. Thus, the aim of this work was to present a classificatory table for this test. Material/Methods: For this purpose 141 judo athletes ( mean +/-standard deviation: 21.3+/-4.5years-old; 74.2+/-15.9 kg of body mass and 176.7+/-8.2 cm of height; judo ranking between 3(rd) kyu and 3(rd) dan) familiarized with the SJFT performed it once in order to provide data to establish a classificatory table. Results: After the analysis of data distribution a five scale table (20% for each classificatory category) was developed considering the variables used in the SJFT ( number of throws, heart rate after and 1 min after the test and index). Conclusions: The classificatory table can help coaches using the SJFT to classify their athletes` level and to monitor their physical fitness progress.
Resumo:
Artioli, GG, Gualano, B, Franchini, E, Batista, RN, Polacow, VO, and Lancha, AH Jr. Physiological, performance, and nutritional profile of the Brazilian Olympic Wushu (kung-fu) team. J Strength Cond Res 23(1): 20-25, 2009-The purpose of the present study was to determine physiological, nutritional, and performance profiles of elite Olympic Wushu (kung-fu) athletes. Ten men and four women elite athletes took part in the study. They completed the following tests: body composition, nutritional assessment, upper-body Wingate Test, vertical jump, lumbar isometric strength, and flexibility. Blood lactate was determined at rest and after the Wingate Test. Blood lactate was also determined during a training session (combat and Taolu training). We found low body fat (men: 9.5 +/- 6.3%; women: 18.0 +/- 4.8%), high flexibility (sit-and-reach-men: 45.5 +/- 6.1 cm; women: 44.0 +/- 6.3 cm), high leg power (vertical jump-men: 37.7 +/- 8.4 cm; women: 32.3 +/- 1.1 cm), high lumbar isometric strength (men: 159 6 13 cm; women: 94 6 6 cm), moderate arm mean and peak power (Wingate Test-men: 4.1 +/- 0.4 and 5.8 +/- 0.5 W.kg(-1), respectively; women: 2.5 +/- 0.3 and 3.4 +/- 0.3 W.kg(-1), respectively), and elevated blood lactate after the Wingate Test (men: 10.8 +/- 2.0 mmol.L(-1); women: 10.2 +/- 2.0 mmol.L(-1)) and during training (combat: 12.0 +/- 1.8 mmol.L(-1); Taolu: 7.7 +/- 3.3 mmol.L(-1)). Men athletes consume a high-fat, low-carbohydrate diet, whereas women consume a moderate, high-carbohydrate diet. Energy consumption was markedly variable. In conclusion, Olympic Wushu seems to be a highly anaerobic-dependent combat sport. Low body fat, high flexibility, leg anaerobic power, isometric strength, and moderately high arm anaerobic power seem to be important for successful competitive performance.
Resumo:
We analyzed the usefulness of a semi-tethered field running test (STR) and the relationships between indices of anaerobic power, anaerobic capacity and running performance in 9 trained male sprinters (22.2 +/- 2.9 yrs, 176 +/- 1 cm, 68.0 +/- 9.4 kg). STR involved an all out 120 m run attached to an apparatus that enabled power calculation from force and velocity measures. Subjects also carried out a cycloergometer Win-gate Anaerobic Test (WT), an all out 300 m run and had accessed their maximal accumulated oxygen deficit (MAOD) on a treadmill. Peak and mean powers attained in STR (1 720 +/- 221 and 1 391 +/- 201 W) were greater but significantly related (r=0.82; P<0.01) to those in the WT (808 +/- 130 and 603 +/- 87 W). In addition, power measures derived from the STR were stronger related to running performance compared to those from the WT (r=0.81-0.94 vs. 0.68-0.84; P<0.05). Relationships between MAOD and most power indices were only weak to moderate. These results support the usefulness of STR for specific power assessment in field running and suggest that anaerobic power and capacity are not related entities, irrespective of having been evaluated using similar or dissimilar exercise modes.