81 resultados para Adenosine diphosphate ribose
Resumo:
The reactions of PbR(2)(OAc)(2) (R=Me, Ph) with 3-(2-thienyl)-2-sulfanylpropenoic acid (H(2)tSpa) in methanol or ethanol afforded complexes [PbR(2)(tspa)] that electrospray ionization-mass spectrometry (ESI-MS) and IR data suggest are polymeric. X-ray studies showed that [PbPh(2)(tspa)(dmso)] center dot dmso, crystallized from a solution of [PbPh(2)(tspa)] in dmso, is dimeric, and that [HQ](2)[PbPh(2)(tspa)(2)] (Q=diisopropylamine), obtained after removal of [PbPh(2)(tspa)] from a reaction including Q, contains the monomeric anion [PbPh(2)(tSpa)(2)](2-). In the solid state the lead atoms are O,S-chelated by the tspa ligands in all these products, and in the latter two have distorted octahedral coordination environments. NMR data suggest that tspa(2-) remains coordinated to PbR(2)(2+) in solution in dmso. Neither thiamine nor thiamine diphosphate reacted with PbMe(2)(NO(3))(2) in D(2)O. Prior addition of H(2)tSpa protected LLC center dot PK1 renal proximal tubule cells against PbMe(2)(NO(3))(2); thiamine had no statistically significant effect by itself, but greatly potentiated the action of H(2)tSpa. Administration of either H(2)tspa or thiamine to male albino Sprague-Dawley rats dosed 30 min previously with PbMe(2)(NO(3))(2) was associated with reduced inhibition of delta-ALAD by the organolead compound, and with lower lead levels in kidney and brain, but joint administration of both H(2)tspa and thiamine only lowered lead concentration in the kidney.
Resumo:
Initially identified in yeast, the exosome has emerged as a central component of the RNA maturation and degradation machinery both in Archaea and eukaryotes. Here we describe a series of high-resolution structures of the RNase PH ring from the Pyrococcus abyssi exosome, one of them containing three 10-mer RNA strands within the exosome catalytic chamber, and report additional nucleotide interactions involving positions N5 and N7. Residues from all three Rrp41-Rrp42 heterodimers interact with a single RNA molecule, providing evidence for the functional relevance of exosome ring-like assembly in RNA processivity. Furthermore, an ADP-bound structure showed a rearrangement of nucleotide interactions at site N1, suggesting a rationale for the elimination of nucleoside diphosphate after catalysis. In combination with RNA degradation assays performed with mutants of key amino acid residues, the structural data presented here provide support for a model of exosome-mediated RNA degradation that integrates the events involving catalytic cleavage, product elimination, and RNA translocation. Finally, comparisons between the archaeal and human exosome structures provide a possible explanation for the eukaryotic exosome inability to catalyze phosphate-dependent RNA degradation.
Resumo:
Chronic chagasic cardiac patients are exposed to oxidative stress that apparently contributes to disease progression. Benznidazole (BZN) is the main drug used for the treatment of chagasic patients and its action involves the generation of reactive species. 41 patients with Chagas` heart disease were selected and biomarkers of oxidative stress were measured before and after 2 months of BZN treatment (5 mg/kg/day) and the subsequent antioxidant supplementation with vitamin E (800 UI/day) and C (500 mg/day) during 6 months. Patients were classified according to the modified Los Andes clinical hemodynamic classification in groups IA, IB, II and III, and the activity of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione S-transferase (GST) and glutathione reductase (GR), as well as the contents of reduced glutathione (GSH), thiobarbituric acid reactive species (TBARS), protein carbonyl (PC), vitamin E and C and nitric oxide (NO), myeloperoxidase (MPO) and adenosine deaminase (ADA) activities were measured in their blood. Excepting in group III, after BZN treatment SOD, CAT, GPx and GST activities as well as PC levels were enhanced while vitamin E levels were decreased in these groups. After antioxidant supplementation the activities of SOD, GPx and GR were decreased whereas PC, TBARS, NO, and GSH levels were decreased. In conclusion, BZN treatment promoted an oxidative insult in such patients while the antioxidant supplementation was able to attenuate this effect by increasing vitamin E levels, decreasing PC and TBARS levels, inhibiting SOD, GPx and GR activities as well as inflammatory markers, mainly in stages with less cardiac involvement. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Geranylation of benzoic acid derivatives by enzymatic extracts from Piper crassinervium (Piperaceae)
Resumo:
The ability to carry out geranylations on aromatic substrates using enzymatic extracts from the leaves of Piper crassinervium (Piperaceae) was evaluated. A literature analysis pointed out its importance as a source of prenylated bioactive molecules. The screening performed on aromatic acceptors (benzoic acids, phenols and phenylpropanoids) including geranyl diphosphate as prenyl donor, showed the biotransformation of the 3,4-dihydroxybenzoic acid by the crude extract, and the p-hydroxybenzoic acid by both the microsomal fraction and the crude extract, after treating leaves with glucose. The analysis of the products allowed the identification of C- and O-geranylated derivatives, and the protease (subtilisin and pepsin) inhibition performed on the O-geranylated compounds showed weak inhibition. Electrophoretic profiles indicated the presence of bands/spots among 56-58 kDa and pI 6-7, which are compatible with prenyltransferases. These findings show that P. crassinervium could be considered as a source of extracts with geranyltransferase activity to perform biotransformations on aromatic substrates. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In order to extend previous SAR and QSAR studies, 3D-QSAR analysis has been performed using CoMFA and CoMSIA approaches applied to a set of 39 alpha-(N)-heterocyclic carboxaldehydes thiosemicarbazones with their inhibitory activity values (IC(50)) evaluated against ribonucleotide reductase (RNR) of H.Ep.-2 cells (human epidermoid carcinoma), taken from selected literature. Both rigid and field alignment methods, taking the unsubstituted 2-formylpyridine thiosemicarbazone in its syn conformation as template, have been used to generate multiple predictive CoMFA and CoMSIA models derived from training sets and validated with the corresponding test sets. Acceptable predictive correlation coefficients (Q(cv)(2) from 0.360 to 0.609 for CoMFA and Q(cv)(2) from 0.394 to 0.580 for CoMSIA models) with high fitted correlation coefficients (r` from 0.881 to 0.981 for CoMFA and r(2) from 0.938 to 0.993 for CoMSIA models) and low standard errors (s from 0.135 to 0.383 for CoMFA and s from 0.098 to 0.240 for CoMSIA models) were obtained. More precise CoMFA and CoMSIA models have been derived considering the subset of thiosemicarbazones (TSC) substituted only at 5-position of the pyridine ring (n=22). Reasonable predictive correlation coefficients (Q(cv)(2) from 0.486 to 0.683 for CoMFA and Q(cv)(2) from 0.565 to 0.791 for CoMSIA models) with high fitted correlation coefficients (r(2) from 0.896 to 0.997 for CoMFA and r(2) from 0.991 to 0.998 for CoMSIA models) and very low standard errors (s from 0.040 to 0.179 for CoMFA and s from 0.029 to 0.068 for CoMSIA models) were obtained. The stability of each CoMFA and CoMSIA models was further assessed by performing bootstrapping analysis. For the two sets the generated CoMSIA models showed, in general, better statistics than the corresponding CoMFA models. The analysis of CoMFA and CoMSIA contour maps suggest that a hydrogen bond acceptor near the nitrogen of the pyridine ring can enhance inhibitory activity values. This observation agrees with literature data, which suggests that the nitrogen pyridine lone pairs can complex with the iron ion leading to species that inhibits RNR. The derived CoMFA and CoMSIA models contribute to understand the structural features of this class of TSC as antitumor agents in terms of steric, electrostatic, hydrophobic and hydrogen bond donor and hydrogen bond acceptor fields as well as to the rational design of this key enzyme inhibitors.
Resumo:
Some oxindole-Schiff base copper(II) complexes have already shown potential antitumor activity towards different cells, inducing apoptosis in a process modulated by the ligand, and having nuclei and mitochondria as main targets. Here, three novel copper(II) complexes with analogous ligands were isolated and characterized by spectroscopic techniques, having their reactivity compared to the so far most active complex in this class. Cytotoxicity experiments carried out toward human neuroblastoma SH-SY5Y cells confirmed its proapoptosis property. DNA cleavage studies were then performed in the presence of these complexes, in order to verify the influence of ligand structural features in its nuclease activity. All of them were able to cause double-strand DNA scissions, giving rise to nicked circular Form II and linear Form III species, in the presence of hydrogen peroxide. Additionally, DNA Form II was also detected in the absence of peroxide when the most active complex, [Cu(isaepy)(2)](2+) 1, was used. In an effort to better elucidate their interactions with DNA, solutions of the different complexes titrated with DNA had their absorption spectra monitored. An absorbance hyperchromism observed at 260 nm pointed to the intercalation of these complexes into the DNA structure. Further, investigations of 2-deoxy-D-ribose (DR) oxidation catalyzed by each of those complexes, using 2-thiobarbituric acid reactive species (TBARS) method, and detection of reactive oxygen species (ROS) formation by spin-trapping EPR, suggested that their mechanism of action in performing efficiently DNA cleavage occurs preferentially, but not only by oxidative pathways. (C) 2007 Elsevier Inc. All rights reserved.