69 resultados para phylogeography, consensus approach, ensemble modeling, Pleistocene, ENM, ecological niche modeling
Resumo:
An entropy-based image segmentation approach is introduced and applied to color images obtained from Google Earth. Segmentation refers to the process of partitioning a digital image in order to locate different objects and regions of interest. The application to satellite images paves the way to automated monitoring of ecological catastrophes, urban growth, agricultural activity, maritime pollution, climate changing and general surveillance. Regions representing aquatic, rural and urban areas are identified and the accuracy of the proposed segmentation methodology is evaluated. The comparison with gray level images revealed that the color information is fundamental to obtain an accurate segmentation. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Complex networks exist in many areas of science such as biology, neuroscience, engineering, and sociology. The growing development of this area has led to the introduction of several topological and dynamical measurements, which describe and quantify the structure of networks. Such characterization is essential not only for the modeling of real systems but also for the study of dynamic processes that may take place in them. However, it is not easy to use several measurements for the analysis of complex networks, due to the correlation between them and the difficulty of their visualization. To overcome these limitations, we propose an effective and comprehensive approach for the analysis of complex networks, which allows the visualization of several measurements in a few projections that contain the largest data variance and the classification of networks into three levels of detail, vertices, communities, and the global topology. We also demonstrate the efficiency and the universality of the proposed methods in a series of real-world networks in the three levels.
Resumo:
The issue of how children learn the meaning of words is fundamental to developmental psychology. The recent attempts to develop or evolve efficient communication protocols among interacting robots or Virtual agents have brought that issue to a central place in more applied research fields, such as computational linguistics and neural networks, as well. An attractive approach to learning an object-word mapping is the so-called cross-situational learning. This learning scenario is based on the intuitive notion that a learner can determine the meaning of a word by finding something in common across all observed uses of that word. Here we show how the deterministic Neural Modeling Fields (NMF) categorization mechanism can be used by the learner as an efficient algorithm to infer the correct object-word mapping. To achieve that we first reduce the original on-line learning problem to a batch learning problem where the inputs to the NMF mechanism are all possible object-word associations that Could be inferred from the cross-situational learning scenario. Since many of those associations are incorrect, they are considered as clutter or noise and discarded automatically by a clutter detector model included in our NMF implementation. With these two key ingredients - batch learning and clutter detection - the NMF mechanism was capable to infer perfectly the correct object-word mapping. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Inhibition of microtubule function is an attractive rational approach to anticancer therapy. Although taxanes are the most prominent among the microtubule-stabilizers, their clinical toxicity, poor pharmacokinetic properties, and resistance have stimulated the search for new antitumor agents having the same mechanism of action. Discodermolide is an example of nontaxane natural product that has the same mechanism of action, demonstrating superior antitumor efficacy and therapeutic index. The extraordinary chemical and biological properties have qualified discodermolide as a lead structure for the design of novel anticancer agents with optimized therapeutic properties. In the present work, we have employed a specialized fragment-based method to develop robust quantitative structure - activity relationship models for a series of synthetic discodermolide analogs. The generated molecular recognition patterns were combined with three-dimensional molecular modeling studies as a fundamental step on the path to understanding the molecular basis of drug-receptor interactions within this important series of potent antitumoral agents.
Structure-Based Approach for the Study of Estrogen Receptor Binding Affinity and Subtype Selectivity
Resumo:
Estrogens exert important physiological effects through the modulation of two human estrogen receptor (hER) subtypes, alpa (hER alpha) and beta (hER beta). Because the levels and relative proportion of hER alpha and hER beta differ significantly in different target cells, selective hER ligands could target specific tissues or pathways regulated by one receptor subtype without affecting the other. To understand the structural and chemical basis by which small molecule modulators are able to discriminate between the two subtypes, we have applied three-dimensional target-based approaches employing a series of potent hER-ligands. Comparative molecular field analysis (CoMFA) studies were applied to a data set of 81 hER modulators, for which binding affinity values were collected for both hER alpha and hER beta. Significant statistical coefficients were obtained (hER alpha, q(2) = 0.76; hER beta, q(2) = 0.70), indicating the internal consistency of the models. The generated models were validated using external test sets, and the predicted values were in good agreement with the experimental results. Five hER crystal structures were used in GRID/PCA investigations to generate molecular interaction fields (MIF) maps. hER alpha and hER beta were separated using one factor. The resulting 3D information was integrated with the aim of revealing the most relevant structural features involved in hER subtype selectivity. The final QSAR and GRID/PCA models and the information gathered from 3D contour maps should be useful for the design or novel hER modulators with improved selectivity.
Resumo:
A study on the benthic ecosystem health was performed to assess the environmental quality of Montevideo coastal zone, in view of the construction of a new sanitation system. Data were compared to previous research undertaken 10 years ago, and biochemical composition of organic matter, heavy metals, organic matter, phytopigments, benthic diatoms, macrofauna community structure and a biotic index (AMBI) were used as proxies. Results indicate an environmental quality-gradient, with the worst conditions within the inner stations of Montevideo Bay and an improvement towards the adjacent coastal zone. Higher levels of chromium, lead, phaeopigments, organic biopolymers and poor benthic macrofauna and diatom communities, characterised the hypertrophic innermost portion of Montevideo Bay. Data indicated a clear deterioration of the adjacent coastal zone comparatively to that observed 10 years ago. The complementary use of approaches not applied before (benthic diatoms and organic biopolymers) with those formerly applied improve our assessment of the trophic status and the environmental health of the area. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This work presents a Bayesian semiparametric approach for dealing with regression models where the covariate is measured with error. Given that (1) the error normality assumption is very restrictive, and (2) assuming a specific elliptical distribution for errors (Student-t for example), may be somewhat presumptuous; there is need for more flexible methods, in terms of assuming only symmetry of errors (admitting unknown kurtosis). In this sense, the main advantage of this extended Bayesian approach is the possibility of considering generalizations of the elliptical family of models by using Dirichlet process priors in dependent and independent situations. Conditional posterior distributions are implemented, allowing the use of Markov Chain Monte Carlo (MCMC), to generate the posterior distributions. An interesting result shown is that the Dirichlet process prior is not updated in the case of the dependent elliptical model. Furthermore, an analysis of a real data set is reported to illustrate the usefulness of our approach, in dealing with outliers. Finally, semiparametric proposed models and parametric normal model are compared, graphically with the posterior distribution density of the coefficients. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
We report in this work the study of the interaction between formic acid and an oxidized platinum surface under open circuit conditions. The investigation was carried out with the aid of in situ infrared spectroscopy, and results analyzed in terms of a mathematical model and numerical simulations. It has been found that during the first seconds of the interaction a small amount of CO(2) is produced and absolutely no adsorbed CO was observed. A sudden drop in potential then follows, which is accompanied by a steep increase first of CO(2) production and then by adsorbed CO. The steep transient was rationalized in terms of an autocatalytic production of free platinum sites which enhances the overall rate of reaction. Modeling and simulation showed nearly quantitative agreement with the experimental observations and provided further insight into some experimentally inaccessible variables such as surface free sites. Finally, based on the understanding provided from the combined experimental and theoretical approach, we discuss the general aspects influencing the open circuit transient.
Resumo:
Selective Estrogen Receptor Modulators ( SERMs) have been developed, but the selectivity towards the subtypes ( ER or ER is not well understood. Based on three-dimensional structural properties of ligand binding domains, a model that takes into account this aspect was developed via molecular interaction fields and consensus principal component analysis (GRID/CPCA).