166 resultados para optical constants measurements
Resumo:
The aim of this study was to determine the reproducibility, reliability and validity of measurements in digital models compared to plaster models. Fifteen pairs of plaster models were obtained from orthodontic patients with permanent dentition before treatment. These were digitized to be evaluated with the program Cécile3 v2.554.2 beta. Two examiners measured three times the mesiodistal width of all the teeth present, intercanine, interpremolar and intermolar distances, overjet and overbite. The plaster models were measured using a digital vernier. The t-Student test for paired samples and interclass correlation coefficient (ICC) were used for statistical analysis. The ICC of the digital models were 0.84 ± 0.15 (intra-examiner) and 0.80 ± 0.19 (inter-examiner). The average mean difference of the digital models was 0.23 ± 0.14 and 0.24 ± 0.11 for each examiner, respectively. When the two types of measurements were compared, the values obtained from the digital models were lower than those obtained from the plaster models (p < 0.05), although the differences were considered clinically insignificant (differences < 0.1 mm). The Cécile digital models are a clinically acceptable alternative for use in Orthodontics.
Resumo:
Objective: The biochemical alterations between inflammatory fibrous hyperplasia (IFH) and normal tissues of buccal mucosa were probed by using the FT-Raman spectroscopy technique. The aim was to find the minimal set of Raman bands that would furnish the best discrimination. Background: Raman-based optical biopsy is a widely recognized potential technique for noninvasive real-time diagnosis. However, few studies had been devoted to the discrimination of very common subtle or early pathologic states as inflammatory processes that are always present on, for example, cancer lesion borders. Methods: Seventy spectra of IFH from 14 patients were compared with 30 spectra of normal tissues from six patients. The statistical analysis was performed with principal components analysis and soft independent modeling class analogy cross-validated, leave-one-out methods. Results: Bands close to 574, 1,100, 1,250 to 1,350, and 1,500 cm(-1) (mainly amino acids and collagen bands) showed the main intragroup variations that are due to the acanthosis process in the IFH epithelium. The 1,200 (C-C aromatic/DNA), 1,350 (CH(2) bending/collagen 1), and 1,730 cm(-1) (collagen III) regions presented the main intergroup variations. This finding was interpreted as originating in an extracellular matrix-degeneration process occurring in the inflammatory tissues. The statistical analysis results indicated that the best discrimination capability (sensitivity of 95% and specificity of 100%) was found by using the 530-580 cm(-1) spectral region. Conclusions: The existence of this narrow spectral window enabling normal and inflammatory diagnosis also had useful implications for an in vivo dispersive Raman setup for clinical applications.
Resumo:
As technology improves human vision, some procedures currently performed may be causing a decrease of the natural UV protection of the cornea. A portable dual beam system prototype was assembled for physicians for clinical studies of these effects on the corneas endowing two types of 300-400 nm evaluations: 1, regularly donated corneas and 2, simulating refractive keratectomy by corneal lamellae removal. The system performs 500 measurements/s, providing +/- 0.25% precision for the transmittance. The measurements performed on the prototype are 95% in agreement with Cary 17 and HR4000CG-UV-NIR Ocean Optics spectrophotometers. Preliminary studies on cadaveric corneas demonstrate that, as the stromal layer is reduced (similar to 150 mu m depth), there is significant loss-an average of 7.1%.-of the cornea's natural UV protection. The prototype is being tested in an eye bank for routine evaluation of donor corneas. (C) 2010 Optical Society of America
Resumo:
This paper revisits the design of L and S band bridged loop-gap resonators (BLGRs) for electron paramagnetic resonance applications. A novel configuration is described and extensively characterized for resonance frequency and quality factor as a function of the geometrical parameters of the device. The obtained experimental results indicate higher values of the quality factor (Q) than previously reported in the literature, and the experimental analysis data should provide useful guidelines for BLGR design.
Resumo:
We report measurements of the nonlinear (NL) refractive index n(2) of lead-germanium films (LGFs) containing Cu and Cu(2)O nanoparticles (NPs). The thermally managed eclipse Z-scan technique with 150 fs pulses from a laser operating at 800 nm was used. The NL refractive index measured, n(2)=6.3x10(-12) cm(2)/W has electronic origin and the NL absorption coefficient alpha(2) is smaller than 660 cm/GW. The figure of merit n(2)/lambda alpha(2) is enhanced by more than two orders of magnitude in comparison with the result for the LGFs without the copper based NPs. (C) 2008 American Institute of Physics.
Resumo:
The design of a lateral line for drip irrigation requires accurate evaluation of head losses in not only the pipe but in the emitters as well. A procedure was developed to determine localized head losses within the emitters by the formulation of a mathematical model that accounts for the obstruction caused by the insertion point. These localized losses can be significant when compared with tire total head losses within the system due to the large number of emitters typically installed along the lateral line. Air experiment was carried out by altering flow characteristics to create Reynolds numbers (R) from 7,480 to 32,597 to provide turbulent flow and a maximum velocity of 2.0 m s(-1). The geometry of the emitter was determined by an optical projector and sensor An equation was formulated to facilitate the localized head loss calculation using the geometric characteristics of the emitter (emitter length, obstruction ratio, and contraction coefficient). The mathematical model was tested using laboratory measurements on four emitters. The local head loss was accurately estimated for the Uniram (difference of +13.6%) and Drip Net (difference of +7.7%) emitters, while appreciable deviations were found for the Twin Plus (-21.8%) and Tiran (+50%) emitters. The head loss estimated by the model was sensitive to the variations in the obstruction area of the emitter However, the variations in the local head loss did not result in significant variations in the maximum length of the lateral lines. In general, for all the analyzed emitters, a 50% increase in the local head loss for the emitters resulted in less than an 8% reduction in the maximum lateral length.
Resumo:
We present the first spin alignment measurements for the K*(0)(892) and phi(1020) vector mesons produced at midrapidity with transverse momenta up to 5 GeV/c at root s(NN) = 200 GeV at RHIC. The diagonal spin-density matrix elements with respect to the reaction plane in Au+Au collisions are rho(00) = 0.32 +/- 0.04 (stat) +/- 0.09 (syst) for the K*(0) (0.8 < p(T) < 5.0 GeV/c) and rho(00) = 0.34 +/- 0.02 (stat) +/- 0.03 (syst) for the phi (0.4 < p(T) < 5.0 GeV/c) and are constant with transverse momentum and collision centrality. The data are consistent with the unpolarized expectation of 1/3 and thus no evidence is found for the transfer of the orbital angular momentum of the colliding system to the vector-meson spins. Spin alignments for K(*0) and phi in Au+Au collisions were also measured with respect to the particle's production plane. The phi result, rho(00) = 0.41 +/- 0.02 (stat) +/- 0.04 (syst), is consistent with that in p+p collisions, rho(00) = 0.39 +/- 0.03 (stat) +/- 0.06 (syst), also measured in this work. The measurements thus constrain the possible size of polarization phenomena in the production dynamics of vector mesons.
Resumo:
The efficacy of photodynamic therapy (PDT) depends on a variety of parameters: concentration of the photosensitizer at the time of treatment, light wavelength, fluence, fluence rate, availability of oxygen within the illuminated volume, and light distribution in the tissue. Dosimetry in PDT requires the congregation of adequate amounts of light, drug, and tissue oxygen. The adequate dosimetry should be able to predict the extension of the tissue damage. Photosensitizer photobleaching rate depends on the availability of molecular oxygen in the tissue. Based on photosensitizers photobleaching models, high photobleaching has to be associated with high production of singlet oxygen and therefore with higher photodynamic action, resulting in a greater depth of necrosis. The purpose of this work is to show a possible correlation between depth of necrosis and the in vivo photosensitizer (in this case, Photogem (R)) photodegradation during PDT. Such correlation allows possibilities for the development of a real time evaluation of the photodynamic action during PDT application. Experiments were performed in a range of fluence (0-450 J/cm(2)) at a constant fluence rate of 250 mW/cm(2) and applying different illumination times (0-1800 s) to achieve the desired fluence. A quantity was defined (psi) as the product of fluorescence ratio (related to the photosensitizer degradation at the surface) and the observed depth of necrosis. The correlation between depth of necrosis and surface fluorescence signal is expressed in psi and could allow, in principle, a noninvasive monitoring of PDT effects during treatment. High degree of correlation is observed and a simple mathematical model to justify the results is presented.
Resumo:
We introduce the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS). CATT-BRAMS is an on-line transport model fully consistent with the simulated atmospheric dynamics. Emission sources from biomass burning and urban-industrial-vehicular activities for trace gases and from biomass burning aerosol particles are obtained from several published datasets and remote sensing information. The tracer and aerosol mass concentration prognostics include the effects of sub-grid scale turbulence in the planetary boundary layer, convective transport by shallow and deep moist convection, wet and dry deposition, and plume rise associated with vegetation fires in addition to the grid scale transport. The radiation parameterization takes into account the interaction between the simulated biomass burning aerosol particles and short and long wave radiation. The atmospheric model BRAMS is based on the Regional Atmospheric Modeling System (RAMS), with several improvements associated with cumulus convection representation, soil moisture initialization and surface scheme tuned for the tropics, among others. In this paper the CATT-BRAMS model is used to simulate carbon monoxide and particulate material (PM(2.5)) surface fluxes and atmospheric transport during the 2002 LBA field campaigns, conducted during the transition from the dry to wet season in the southwest Amazon Basin. Model evaluation is addressed with comparisons between model results and near surface, radiosondes and airborne measurements performed during the field campaign, as well as remote sensing derived products. We show the matching of emissions strengths to observed carbon monoxide in the LBA campaign. A relatively good comparison to the MOPITT data, in spite of the fact that MOPITT a priori assumptions imply several difficulties, is also obtained.
Resumo:
Multifilter rotating shadowband radiometer (MFRSR) calibration values for aerosol optical depth (AOD) retrievals were determined by means of the general method formulated by Forgan [Appl. Opt. 33, 4841 (1994)] at a polluted urban site. The obtained precision is comparable with the classical method, the Langley plot, applied on clean mountaintops distant of pollution sources. The AOD retrieved over Sao Paulo City with both calibration procedures is compared with the Aerosol Robotic Network data. The observed results are similar, and, except for the shortest wavelength (415 nm), the MFRSR`s AOD is systematically overestimated by similar to 0.03. (c) 2008 Optical Society of America.
Resumo:
Aims. We determine the iron distribution function (IDF) for bulge field stars, in three different fields along the Galactic minor axis and at latitudes b = -4 degrees, b = -6 degrees, and b = -12 degrees. A fourth field including NGC 6553 is also included in the discussion. Methods. About 800 bulge field K giants were observed with the GIRAFFE spectrograph of FLAMES@VLT at spectral resolution R similar to 20 000. Several of them were observed again with UVES at R similar to 45 000 to insure the accuracy of the measurements. The LTE abundance analysis yielded stellar parameters and iron abundances that allowed us to construct an IDF for the bulge that, for the first time, is based on high-resolution spectroscopy for each individual star. Results. The IDF derived here is centered on solar metallicity, and extends from [Fe/H] similar to -1.5 to [Fe/H] similar to + 0.5. The distribution is asymmetric, with a sharper cutoff on the high-metallicity side, and it is narrower than previously measured. A variation in the mean metallicity along the bulge minor axis is clearly between b = -4 degrees and b = -6 degrees ([Fe/H] decreasing similar to by 0.6 dex per kpc). The field at b = -12 degrees. is consistent with the presence of a gradient, but its quantification is complicated by the higher disk/bulge fraction in this field. Conclusions. Our findings support a scenario in which both infall and outflow were important during the bulge formation, and then suggest the presence of a radial gradient, which poses some challenges to the scenario in which the bulge would result solely from the vertical heating of the bar.
Resumo:
Context. Close binary supersoft X-ray sources (CBSS) are binary systems that contain a white dwarf with stable nuclear burning on its surface. These sources, first discovered in the Magellanic Clouds, have high accretion rates and near-Eddington luminosities (10(37)-10(38) erg s(-1)) with high temperatures (T = 2-7 x 10(5) K). Aims. The total number of known objects in the MC is still small and, in our galaxy, even smaller. We observed the field of the unidentified transient supersoft X-ray source RX J0527.8-6954 in order to identify its optical counterpart. Methods. The observation was made with the IFU-GMOS on the Gemini South telescope with the purpose of identifying stars with possible He II or Balmer emission or else of observing nebular extended jets or ionization cones, features that may be expected in CBSS. Results. The X-ray source is identified with a B5e V star that is associated with subarcsecond extended H alpha emission, possibly bipolar. Conclusions. If the primary star is a white dwarf, as suggested by the supersoft X-ray spectrum, the expected orbital period exceeds 21 h; therefore, we believe that the 9.4 h period found so far is not associated to this system.
Resumo:
As a part of our galaxy-cluster redshift survey, we present a set of 79 new velocities in the 4 clusters Abell 376, Abell 970, Abell 1356, and Abell 2244, obtained at Haute-Provence observatory. This set now completes our previous analyses, especially for the first two clusters. Data on individual galaxies are presented, and we discuss some cluster properties. For A376, we obtained an improved mean redshift (z) over bar = 0.04750 with a velocity dispersion of sigma(V) = 860 km s(-1). For A970, we have (z) over bar = 0.05875 with sigma(V) = 881 km s(-1). We show that the A1356 cluster is not a member of the ""Leo-Virgo"" supercluster at a mean redshift (z) over bar = 0.112 and should be considered just as a foreground group of galaxies at (z) over bar = 0.0689, as well as A1435 at (z) over bar = 0.062. We obtain (z) over bar = 0.09962 for A2244 with sigma(V) = 965 km s(-1). The relative proximity of clusters A2244 and A2245 ((z) over bar = 0.08738, sigma(V) = 992 km s(-1)) suggests that these could be members of a supercluster that would include A2249; however, from X-ray data there is no indication of interaction between A2244 and A2245.
Resumo:
The exact composition of a specific class of compact stars, historically referred to as ""neutron stars,'' is still quite unknown. Possibilities ranging from hadronic to quark degrees of freedom, including self-bound versions of the latter, have been proposed. We specifically address the suitability of strange star models (including pairing interactions) in this work, in the light of new measurements available for four compact stars. The analysis shows that these data might be explained by such an exotic equation of state, actually selecting a small window in parameter space, but still new precise measurements and also further theoretical developments are needed to settle the subject.
Resumo:
Aims. We report the discovery of very shallow (Delta F/F approximate to 3.4 x 10(-4)), periodic dips in the light curve of an active V = 11.7 G9V star observed by the CoRoT satellite, which we interpret as caused by a transiting companion. We describe the 3-colour CoRoT data and complementary ground-based observations that support the planetary nature of the companion. Methods. We used CoRoT colours information, good angular resolution ground-based photometric observations in- and out- of transit, adaptive optics imaging, near-infrared spectroscopy, and preliminary results from radial velocity measurements, to test the diluted eclipsing binary scenarios. The parameters of the host star were derived from optical spectra, which were then combined with the CoRoT light curve to derive parameters of the companion. Results. We examined all conceivable cases of false positives carefully, and all the tests support the planetary hypothesis. Blends with separation >0.40 '' or triple systems are almost excluded with a 8 x 10(-4) risk left. We conclude that, inasmuch we have been exhaustive, we have discovered a planetary companion, named CoRoT-7b, for which we derive a period of 0.853 59 +/- 3 x 10(-5) day and a radius of R(p) = 1.68 +/- 0.09 R(Earth). Analysis of preliminary radial velocity data yields an upper limit of 21 M(Earth) for the companion mass, supporting the finding. Conclusions. CoRoT-7b is very likely the first Super-Earth with a measured radius. This object illustrates what will probably become a common situation with missions such as Kepler, namely the need to establish the planetary origin of transits in the absence of a firm radial velocity detection and mass measurement. The composition of CoRoT-7b remains loosely constrained without a precise mass. A very high surface temperature on its irradiated face, approximate to 1800-2600 K at the substellar point, and a very low one, approximate to 50 K, on its dark face assuming no atmosphere, have been derived.