92 resultados para hybrid glasses
Resumo:
The aim of this preliminary work was to present a novel method, suitable to investigate the glass cooling, from melt to solid state, based on a fast, non-usual and easy microwave method. The following glass system xBaO . (100-x)B(2)O(3) (x = 0% and 40%) was selected as an example for this study. The melt was poured inside a piece of waveguide and then, its cooling was monitored by the microwave signal as a function of time. The variations in the signal can provide valuable informations about some structural changes that take place during the cooling stages, such as relaxation processes. This method can be useful to investigate the cooling and heating of other materials, opening new possibilities for investigation of dielectric behavior of materials under high temperatures. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Microwave techniques were applied to the study of dielectric properties of phosphate glasses on the basis of contributions from permanent and induced dipolar polarization of local structural units interacting with the electrical component of the electromagnetic radiation. The dielectric constant of the selected glass system (100-x)(50P(2)O(5)center dot 25Li(2)O center dot 25Na(2)O)center dot xFe(2)O(3), where 0 <= x <= 21 is in mol%, was measured using a microwave setup assembled to measure the phase shift of the standing wave pattern produced by the insertion of the sample. It is shown that the Fe2+ ions contribute effectively to the dielectric constant, as expected from the interactions of the dipoles of the local charge compensation pairs with the microwave radiation. However, there is the possibility of occurrence of some ions Fe3+, in general, at low iron content, which reinforces the glass structure and, therefore, decreases the dielectric constant. There is a gradual conversion from Fe3+ to Fe2+ as the iron ions increases. This is possibly the reason of the anomaly in the dielectric constant values observed in the results. These assumptions can be checked by results of electronic paramagnetic resonance (EPR) and optical absorption (OA). The dielectric constant of the glasses studied in this work was found to increase with the temperature in the range of 25-330 degrees C. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The Alagoas Curassow Mitu mitu is considered extinct in the wild. Since 1979, two females and a male caught in the wild have bred successfully in captivity, and, in 1990, hybridizations between M. mitu and Razor-billed Mitu M. tuberosum were performed. By June 2008, there were around 130 living birds in two different aviaries. We sequenced two regions of the mitochondrial DNA of both captive stocks of Alagoas Curassows. We unequivocally identified hybrids that have haplotype typical of M. tuberosum. However, unless the original studbook can be recovered there is no confident way to discriminate ""pure"" M. mitu birds for breeding and reintroduction purposes. Allied with morphological data gathered in an independent study, we suggest that conservation actions need to focus on specimens with diagnostic phenotypic characters of M. mitu, and avoid birds with mitochondria, genetic contribution of M. tuberosum. Although we have detected low levels of genetic variability among captive birds, the steady increase of the captive population suggests that inbreeding depression and hybridization are not a reproductive hindrance. Reintroduction of some of these potential hybrid birds in the original area of occurrence of the Alagoas Curassow may be the only hope to fill in the ecological niche left vacant. An educational program involving local communities to conserve future reintroduction of curassows and their restored habitat is highly recommended. Accepted 12 November 2009.
Resumo:
Case-Based Reasoning is a methodology for problem solving based on past experiences. This methodology tries to solve a new problem by retrieving and adapting previously known solutions of similar problems. However, retrieved solutions, in general, require adaptations in order to be applied to new contexts. One of the major challenges in Case-Based Reasoning is the development of an efficient methodology for case adaptation. The most widely used form of adaptation employs hand coded adaptation rules, which demands a significant knowledge acquisition and engineering effort. An alternative to overcome the difficulties associated with the acquisition of knowledge for case adaptation has been the use of hybrid approaches and automatic learning algorithms for the acquisition of the knowledge used for the adaptation. We investigate the use of hybrid approaches for case adaptation employing Machine Learning algorithms. The approaches investigated how to automatically learn adaptation knowledge from a case base and apply it to adapt retrieved solutions. In order to verify the potential of the proposed approaches, they are experimentally compared with individual Machine Learning techniques. The results obtained indicate the potential of these approaches as an efficient approach for acquiring case adaptation knowledge. They show that the combination of Instance-Based Learning and Inductive Learning paradigms and the use of a data set of adaptation patterns yield adaptations of the retrieved solutions with high predictive accuracy.
Resumo:
There is an increasing interest in the application of Evolutionary Algorithms (EAs) to induce classification rules. This hybrid approach can benefit areas where classical methods for rule induction have not been very successful. One example is the induction of classification rules in imbalanced domains. Imbalanced data occur when one or more classes heavily outnumber other classes. Frequently, classical machine learning (ML) classifiers are not able to learn in the presence of imbalanced data sets, inducing classification models that always predict the most numerous classes. In this work, we propose a novel hybrid approach to deal with this problem. We create several balanced data sets with all minority class cases and a random sample of majority class cases. These balanced data sets are fed to classical ML systems that produce rule sets. The rule sets are combined creating a pool of rules and an EA is used to build a classifier from this pool of rules. This hybrid approach has some advantages over undersampling, since it reduces the amount of discarded information, and some advantages over oversampling, since it avoids overfitting. The proposed approach was experimentally analysed and the experimental results show an improvement in the classification performance measured as the area under the receiver operating characteristics (ROC) curve.
Resumo:
Polysilsesquioxanes containing methacrylate pendant groups were prepared by the sol-gel process through hydrolysis and condensation of (3-methacryloxypropyl)trimethoxysilane (MPTS) dissolved in a methanol/methyl methacrylate (MMA) mixture. The effects of different water, MMA, and methanol contents, as well as of pH, on the nanoscopic and local structures of the system, at advanced stages of the condensation reaction, were studied by small-angle X-ray scattering (SAXS) and (29)Si nuclear magnetic resonance (NMR) spectroscopy, respectively. SAXS results indicate that the nanoscopic features of the hybrid sol could be described by a hierarchical model composed of two levels, namely (i) silsesquioxane (SSQO) nanoparticles Surrounded by the methacrylate pendant groups and the methanol/MMA mixture. and (ii) aggregation zones or islands containing correlated SSQO nanoparticles, embedded in the liquid medium. The (29)Si NMR results Show that the inner Structures of SSQO nanoparticles produced at pH 1 and 3 were built Up of polyhedral structures. mainly cagelike octamers and small linear oligomers, respectively. Irrespective of MMA and methanol contents, for a [H(2)O]/[MPTS] ratio higher than or equal to 1, the SSQO nailoparticles produced at pH I exhibit an average condensation degree (CD approximate to 69-87%) and average radius of gyration (R(g) approximate to 2.5 angstrom) larger than those produced at pH 3 (CD approximate to 48-67% and R(g) approximate to 1.5 angstrom). Methanol appears to act as a redispersion agent, by decreasing the number of particles inside the aggregation zones, while the addition of MMA induces a swelling of the aggregation zones.
Resumo:
Hybrid reflections (HRs) involving substrate and layer planes (SL type) [Morelhao et al., Appl. Phys. Len. 73 (15), 2194 (1998)] observed in Chemical Beam Epitaxy (CBE) grown InGaP/GaAs(001) structures were used as a three-dimensional probe to analyze structural properties of epitaxial layers. A set of (002) rocking curves (omega-scan) measured for each 15 degrees in the azimuthal plane was arranged in a pole diagram in phi for two samples with different layer thicknesses (#A -58 nm and #B - 370 nm) and this allowed us to infer the azimuthal epilayer homogeneity in both samples. Also, it was shown the occurrence of (1 (1) over bar3) HR detected even in the thinner layer sample. Mappings of the HR diffraction condition (omega:phi) allowed to observe the crystal truncation rod through the elongation of HR shape along the substrate secondary reflection streak which can indicate in-plane match of layer/substrate lattice parameters. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Intrinsic paramagnetic responses were observed in the 60TeO(2)-25ZnO-15Na(2)O and 85TeO(2)-15Na(2)O mol% glasses, after gamma-irradiation at room temperature: (1) a shoulder at g(1) = g(parallel to) = 2.02 +/- 0.01 and an estimated g(perpendicular to)similar to 2.0 attributed to tellurium-oxygen hole center (TeOHC); (2) a narrow resonance at g(2)= 1.9960 +/- 0.0005 related to the modifiers and (3) a resolved resonance at g(3) = 1.9700 +/- 0.0005 ascribed to a tellurium electron center (TeEC) of an electron trapped at an oxygen vacancy (V(o)(+)) in a tellurium oxide structural center. It is suggested that the creation of (NBO(-),V(o)(+)) pair follows a mechanism where the modifier oxide molecule actuates as a catalyser. An additional model for the NBO radiolysis produced by the gamma-irradiation is proposed on the basis of the evolution of the g(1), g(2) and g(3) intensities with increasing dose (kGy). Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.
Resumo:
A previously proposed model describing the trapping site of the interstitial atomic hydrogen in borate glasses is analyzed. In this model the atomic hydrogen is stabilized at the centers of oxygen polygons belonging to B-O ring structures in the glass network by van der Waals forces. The previously reported atomic hydrogen isothermal decay experimental data are discussed in the light of this microscopic model. A coupled differential equation system of the observed decay kinetics was solved numerically using the Runge Kutta method. The experimental untrapping activation energy of 0.7 x 10(-19) J is in good agreement with the calculated results of dispersion interaction between the stabilized atomic hydrogen and the neighboring oxygen atoms at the vertices of hexagonal ring structures. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Some dosimetric properties of watch glasses were studied applying the thermoluminescence technique. The watch glass samples were powdered, and the selected grains were mixed with Teflon (TM). The mixture was pressed and sintered to produce pellets of watch glass-Teflon (TM) composites. The glow curves of the pellets show two peaks at 130 and 195 degrees C. Reproducibility of TL response was estimated to have a maximum coefficient of variation of 4.0%. The dose-response curve is sublinear between 0.5 and 20.0kGy. The calibration curve is linear between 1.0Gy and 1.0kGy. The minimum detection limits were also determined. The gamma radiation dose response and the thermal stability of the materials were studied with the purpose to establish the best conditions of watch glasses for use in gamma radiation dosimetry. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
We investigate from first principles the electronic and transport properties of hybrid organic/silicon interfaces of relevance to molecular electronics. We focus on conjugated molecules bonded to hydrogenated Si through hydroxyl or thiol groups. The electronic structure of the systems is addressed within density functional theory, and the electron transport across the interface is directly evaluated within the Landauer approach. The microscopic effects of molecule-substrate bonding on the transport efficiency are explicitly analyzed, and the oxygen-bonded interface is identified as a candidate system when preferential hole transfer is needed.
Resumo:
Neodymium doped yttrium aluminoborate and yttrium calcium borate glasses were prepared by the conventional melting-quenching technique with neodymium concentration varying from 0.10 to 1.0 mol%. The obtained glasses present a wide transparency in the UV-visible region (till 240 nm). The thermoluminescent (TL) emission of beta-irradiated samples was measured, showing a broad peak at similar to 240 degrees C with intensities related to the Nd(3+) content, for both glasses. Calcium borate glass samples are about one order of magnitude less luminescent than the aluminoborate glasses. Probably the presence of Ca(2+), instead of Al(3+) and Y(3+) in the matrix, inhibits the production of the intrinsic hole centers. connected to boron and oxygen, known in the literature to act as luminescent centers in TL emission of borate glasses. We suggest that Nd(3+) ions act as electron trapping centers in both glass matrices, as they modify the temperature of emission and the light intensity. Also, the Nd:YAIB glass can be used as a dosimeter in various applications, including radiotherapy. but the sensitivity of this material to neutron should be checked. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
While evidence of ion reduction at the cathode has been given, proof of anode activity, in order to account completely for the redox-type electrochemical mechanism so far postulated to originate the electric field-induced non-spontaneous crystallization observed in glasses, is still lacking. This study demonstrates that direct contact of both cathode and anode electrodes with the material is mandatory to promote crystal nucleation. The electrochemical process of concern is established here to involve a solid-state process, electrolytic in nature. (C) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Bismuth germanate glasses are interesting materials due to their physical properties and their unique structural characteristics caused by the coordination changes of bismuth and germanium atoms. Glasses of the bismuth germanate system were prepared by melting/molding method and were investigated concerning their thermal and structural properties. The structural analysis of the samples was carried out by micro-Raman and Fourier transform infrared spectroscopes. It was observed that the glass structure is formed basically by GeO(4) tetrahedral units also having the formation of the GeO(6) octahedral units. BiO(2) was considered a network former by observing the presence of octahedral BiO(6) and pyramidal BiO(3) groups in the local structure of the samples. An absorption band observed at 1103 cm(-1) in the IR spectrum of the undoped glass was attributed to the Bi-O-Ge and/or Bi-O-Bi linkage vibration. The said band shifted to lower wavenumbers after the CeO(2) addition thus reflecting changes in the glass network. Cerium oxide was an efficient oxidant agent to prevent the darkening of the glasses which was probably associated to the reduction of Bi ions. However, CeO(2) was incorporated as a local network modifier in the glass structure even at concentrations of 0.2 mol%. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This work reports on a distinct experimental procedure conceived to closely approach the question of development of crystallization in lead oxyfluoroborate glasses in the presence of an electric field. After proposing earlier that this phenomenon should involve occurrence of redox-type electrochemical reactions occurring at the electrodes. it was in fact recently shown that a direct contact of the glasses with both the cathode and anode revealed essential, provided that crystallization did not develop when ions migration to these electrodes became frustrated. The present study demonstrates that. even in Pt,Ag/Glass/YSZ:PbF(2)/Ag,Pt-type electrochemical cells subjected to electric field action, where YSZ:PbF(2) represents composite-like mixtures (formed by Y(2)O(3)-doped ZrO(2) and PbF(2)) placed between the glass and anode. crystallization was observable in given cases. In summary, supported by (micro)structural and electrical characterizations, clear evidence is provided here that, besides Pb(2+) reduction at the cathode, crystallization really involves simultaneous F(-) oxidation at the anode, completing thus the whole redox electrochemical reaction so far postulated. In these cases, F(-) migration to the anode was achievable following PbF(2) percolative-like paths through the YSZ:PbF(2) mixtures. (C) 2010 Elsevier B.V. All rights reserved.