91 resultados para diamond wheel
Resumo:
Objective: To examine the morphological, early and long-term microtensile bond strengths (mu TBS) of one-step self-etch systems to unground and ground enamel. Materials and Methods: Resin composite (Filtek Z250) buildups were bonded to the buccal and lingual enamel surfaces (unground, bur-cut or SiC-roughened enamel) of third molars after adhesive application using the following adhesives: Clearfil S(3) Bond (CS3); Adper Prompt L-Pop (ADP); iBond (iB) and, as the control, Clearfil SE Bond (CSE). Six tooth halves were assigned for each condition. After storage in water (24 hours/37 degrees C), the bonded specimens were sectioned into beams (0.8 mm(2)) and subjected to pTBS (0.5 mm/min) either immediately (IM) or after six (6M) or 12 months (12M) of water storage. The data were analyzed by three-way repeated measures ANOVA and Tukey`s test (alpha=0.05). Surface conditioning was observed under scanning electron microscopy (SEM). Results: The mu TBS in the Si-C paper and diamond bur groups were similar and higher than the unground group. No significant difference was observed among the different storage periods, except for CS3, which showed an increase in the pTBS after 12M. The etching pattern was more retentive on ground enamel. Conclusions: One-step self-etch adhesives showed higher bond strengths on ground enamel and no reductions in resin-enamel bonds were observed after 12M of water storage.
Resumo:
This study examined the early and long-term microtensile bond strengths (mu TBS) and interfacial enamel gap formation (IGW) of two-step selfetch systems to unground and ground enamel. Resin composite (Filtek Z250) buildups were bonded to proximal enamel surfaces (unground, bur-cut or SiC-treated enamel) of third molars after the application of four self-etch adhesives: a mild (Clearfil SE Bond [SE]), two moderate (Optibond Solo Plus Self-Etch Primer [SO] and AdheSE [AD]) and a strong adhesive (Tyrian Self Priming Etchant + One Step Plus [TY]) and two etch-and-rinse adhesive systems (Single Bond [SB] and Scotchbond Multi-Purpose Plus [SBMP]). Ten tooth halves were assigned for each adhesive. After storage in water (24 hours/37 degrees C), the bonded specimens were sectioned into beams (0.9 mm(2)) and subjected to mu TBS (0.5 mm/minute) or interfacial gap width measurement (stereomicroscope at 400x) either immediately (IM) or after 12 months (12M) of water storage. The data were analyzed by three-way repeated measures ANOVA and Tukey`s test (alpha=0.05). No gap formation was observed in any experimental condition. The mu TBS in the Si-C paper and diamond bur groups were similar and greater than the unground group only for the moderate self-etch systems (SO and AD). No reductions in bond strength values were observed after 12 months of water storage, regardless of the adhesive evaluated.
Resumo:
Purpose: To test the strength to failure and fracture mode of three indirect composite materials directly applied onto Ti-6Al-4V implant abutments vs cemented standard porcelain-fused-to-metal (PFM) crowns. Materials and Methods: Sixty-four locking taper abutments were randomly allocated to four groups and were cleaned in ethanol in an ultrasonic bath for 5 min. After drying under ambient conditions, the abutments were grit blasted and a custom 4-cusp molar crown mold was utilized to produce identical crowns (n = 16 per group) of Tescera (Bisco), Ceramage (Shofu), and Diamond Crown (DRM) according to the manufacturer`s instructions. The porcelain-fused-to-metal crowns were fabricated by conventional means involving the construction and a wax pattern and casting of a metallic coping followed by sintering of increasing layers of porcelain. All crowns were loaded to failure by an indenter placed at one of the cusp tips at a 1 mm/min rate. Subsequently, fracture analysis was performed by means of stereomicroscopy and scanning electron microscopy. One-way ANOVA at 95% level of significance was utilized for statistical analysis. Results: The single load to failure (+/- SD) results were: Tescera (1130 +/- 239 N), Ceramage (1099 +/- 257 N), Diamond Crown (1155 +/- 284 N), and PFM (1081 +/- 243 N). Stereomicroscopy analysis showed two distinct failure modes, where the loaded cusp failed either with or without abutment/metallic coping exposure. SEM analysis of the fractures showed multiple crack propagation towards the cervical region of the crown below a region of plastic deformation at the indenter contact region. Conclusion: The three indirect composites and PFM systems fractured at loads higher than those typically associated with normal occlusal function. Although each material had a different composition and handling technique, no significant differences were found concerning their single load to fracture resistance among composite systems and PFM.
Resumo:
This study evaluated the effect of 2% chlorhexidine digluconate (CHX) used as a therapeutic primer on the long-term bond strengths of two etch-and-rinse adhesives to normal (ND) and caries-affected (CAD) dentin. Forty extracted human molars with coronal carious lesions, surrounded by normal dentin, were selected for this study. The flat surfaces of two types of dentin (ND and CAD) were prepared with a water-cooled high-speed diamond disc, then acidetched, rinsed and air-dried. In the control groups, the dentin was re-hydrated with distilled water, blot-dried and bonded with a three-step (Scotchbond Multi-Purpose-MP) or two-step (Single Bond 2-SB) etch-and-rinse adhesive. In the experimental groups, the dentin was rehydrated with 2% CHX (60 seconds), blot-dried and bonded with the same adhesives. Resin composite build-ups were made. The specimens were prepared for microtensile bond testing in accordance with the non-trimming technique, then tested either immediately or after six-months storage in artificial saliva. The data were analyzed by ANOVA/Bonferroni tests (alpha=0.05). CHX did not affect the immediate bond strength to ND or CAD (p>0.05). CHX treatment significantly lowered the loss of bond strength after six months as seen in the control bonds for ND (p<0.05), but it did not alter the bond strength of CAD (p>0.05). The application of NIP on CHX-treated ND or CAD produced bonds that did not change over six months of storage.
Resumo:
Considering the increase in esthetic restorative materials and need for improvement in unsatisfactory restoration substitution with minimal inadvertent removal of healthy tissues, this study assessed the efficacy of erbium:yttrium-aluminum-garnet (Er:YAG) laser for composite resin removal and the influence of pulse repetition rate on the morphological analyses of the cavity by scanning electron microscope. Composite resin fillings were placed in cavities (1.0 mm deep) prepared in bovine teeth, and the 75 specimens were randomly assigned to five groups according to the technique used for composite filling removal (high-speed diamond bur, group I, as a control, and Er:YAG laser, 250 mJ output energy and 80 J/cm(2) energy density, using different pulse repetition rates: group II, 2 Hz; group III, 4 Hz; group IV, 6 Hz; group V, 10 Hz). After the removal, the specimens were split in the middle, and we analyzed the surrounding and deep walls to check for the presence of restorative material. The estimation was qualitative. The surfaces were examined with a scanning electron microscope. The results revealed that the experimental groups presented bigger amounts of remaining restorative material. The scanning electron microscopy (SEM) analyses showed irregularities of the resultant cavities of the experimental groups that increased proportionally with increase in repetition rate.
Resumo:
The Epiphany (TM) Sealer is a new dual-curing resin-based sealer and has been introduced as an alternative to gutta-percha and traditional root canal sealers. The canal filling is claimed to create a seal with the dentinal tubules within the root canal system producing a `monoblock` effect between the sealer and dentinal tubules. Therefore, considering the possibility to incorporate the others adhesive systems, it is important to study the bond strength of the resulting cement. Forty-eight root mandibular canines were sectioned 8-mm below CEJ. The dentine discs were prepared using a tapered diamond bur and irrigated with 1% NaOCl and 17% EDTA. Previous the application Epiphany (TM) Sealer, the Epiphany (TM) Primer, AdheSE, and One Up Bond F were applied to the root canal walls. The LED and QTH (Quartz Tungsten Halogen) were used to photo-activation during 45 s with power density of 400 and 720 mW/cm(2), respectively. The specimens were performed on a universal testing machine at a cross-head speed of 1 mm/min until bond failure occurred. The force was recorded and the debonding values were used to calculate Push-out bond strength. The analysis of variance (ANOVA) and Tukey`s post-hoc tests showed significant statistical differences (P < 0.05) to Epiphany (TM) Sealer/Epiphany (TM) Primer/QTH and EpiphanyTM Sealer/AdheSE/QTH, which had the highest mean values of bond strength. The efficiency of resin-based filling materials are dependent the type of light curing unit used including the power density, the polymerization characteristics of these resin-based filling materials, depending on the primer/adhesive used.
Resumo:
This study evaluated in vitro the bond strength of Epiphany sealer prepared with resinous solvent of Epiphany system (Thinning resin) by using a push-out test. Forty maxillary canines were sectioned transversally below the cementoenamel junction to provide 4-mm-thick dentin disks that were centered in aluminum rings and embedded in acrylic resin. Root canals were prepared with tapered diamond bur. Intraradicular dentin was treated with 1% NaOCl for 30 minutes, 17% ethylenediaminetetraacetic acid for 5 minutes, and flushed with distilled water for 1 minute. The specimens were randomly distributed into 4 groups (n = 10) according to the filling material: GI, Epiphany without photoactivation; GII, Epiphany prepared with solvent without photoactivation; Gill, Epiphany followed by photoactivation; and GIV, Epiphany prepared with solvent followed by photoactivation. After the setting time, the specimens were submitted to the push-out test. The highest mean value (14.91 +/- 2.82 MPa) was obtained with Epiphany prepared with solvent followed by photoactivation (GIV), which was statistically different (P < .01) from the other groups. Groups I (8.15 +/- 2.47 MPa), II (9.46 +/- 2.38 MPa), and III (9.80 +/- 2.51 MPa) had inferior bond strength values and were statistically similar among themselves (P > .01). The resinous solvent of Epiphany system increased the bond strength of Epiphany sealer to dentin walls when followed by photoactivation. (J Endod 2009;35: 251-255)
Resumo:
P>The aim of this study was to validate an original portable device to measure attachment retention of implant overdentures both in the lab and in clinical settings. The device was built with a digital force measurement gauge (Imada) secured to a vertical wheel stand associated with a customized support to hold and position the denture in adjustable angulations. Sixteen matrix and patrix cylindrical stud attachments (Locator (R)) were randomly assigned as in vitro test specimens. Attachment abutments were secured in an implant analogue hung to the digital force gauge or to the load cell of a traction machine used as the gold standard (Instron Universal Testing Machine). Matrices were secured in a denture duplicate attached to the customized support, permitting reproducibility of their position on both pulling devices. Attachment retention in the axial direction was evaluated by measuring maximum dislodging force or peak load during five consecutive linear dislodgments of each attachment on both devices. After a wear simulation, retention was measured again at several time periods. The peak load measurements with the customized Imada device were similar to those obtained with the gold standard Instron machine. These findings suggest that the proposed portable device can provide accurate information on the retentive properties of attachment systems for removable dental prostheses.
Resumo:
Purpose: This study evaluated the effect of different concentrations of ethanol on hardness, roughness, flexural strength, and color stability of a denture base material using a microwave-processed acrylic resin as a model system. Materials and Methods: Sixty circular (14 x 4 mm) and 60 rectangular microwave-polymerized acrylic resin specimens (65 x 10 x 3 mm(3)) were employed in this study. The sample was divided into six groups according to the ethanol concentrations used in the immersion solution, as follows: 0% (water), 4.5%, 10%, 19%, 42%, and 100%. The specimens remained immersed for 30 days at 37 degrees C. The hardness test was performed by a hardness tester equipped with a Vickers diamond penetrator, and a surface roughness tester was used to measure the surface roughness of the specimens. Flexural strength testing was carried out on a universal testing machine. Color alterations (Delta E) were measured by a portable spectrophotometer after 12 and 30 days. Variables were analyzed by ANOVA/Tukey`s test (alpha = 0.05). Results: For the range of ethanol-water solutions for immersion (water only, 4.5%, 10%, 19.5%, 42%, and 100%), the following results were obtained for hardness (13.9 +/- 2.0, 12.1 +/- 0.7, 12.9 +/- 0.9, 11.2 +/- 1.5, 5.7 +/- 0.3, 2.7 +/- 0.5 VHN), roughness (0.13 +/- 0.01, 0.15 +/- 0.07, 0.13 +/- 0.05, 0.13 +/- 0.02, 0.23 +/- 0.05, 0.41 +/- 0.19 mu m), flexural strength (90 +/- 12, 103 +/- 18, 107 +/- 16, 90 +/- 25, 86 +/- 22, 8 +/- 2 MPa), and color (0.8 +/- 0.6, 0.8 +/- 0.3, 0.7 +/- 0.4, 0.9 +/- 0.3, 1.3 +/- 0.3, 3.9 +/- 1.5 Delta E) after 30 days. Conclusions: The findings of this study showed that the ethanol concentrations of tested drinks affect the physical properties of the investigated acrylic resin. An obvious plasticizing effect was found, which could lead to a lower in vivo durability associated with alcohol consumption.
Resumo:
Purpose: This study evaluated the effect of the incorporation of the antimicrobial monomer methacryloyloxyundecylpyridinium bromide (MUPB) on the hardness, roughness, flexural strength, and color stability of a denture base material. Materials and Methods: Ninety-six disk-shaped (14-mm diameter x 4-mm thick) and 30 rectangular (65 x 10 x 3.3 mm(3)) heat-polymerized acrylic resin specimens were divided into three groups according to the concentration of MUPB (w/w): (A) 0%, (B) 0.3%, (C) 0.6%. Hardness was assessed by a hardness tester equipped with a Vickers diamond penetrator. Flexural strength and surface roughness were tested on a universal testing machine and a surface roughness tester, respectively. Color alterations (Delta E) were measured by a portable spectrophotometer after 12 and 36 days of immersion in water, coffee, or wine. Variables were analyzed by ANOVA/Tukey HSD test (alpha = 0.05). Results: The following mean results (+/-SD) were obtained for hardness (A: 15.6 +/- 0.6, B: 14.6 +/- 1.7, C: 14.8 +/- 0.8 VHN; ANOVA: p = 0.061), flexural strength (A: 111 +/- 17, B: 105 +/- 12, C: 88 +/- 12 MPa; ANOVA: p = 0.008), and roughness (A: 0.20 +/- 0.11, B: 0.20 +/- 0.11, C: 0.24 +/- 0.08 mu m; ANOVA: p = 0.829). Color changes of immersed specimens were significantly influenced by solutions and time (A: 9.1 +/- 3.1, B: 14.8 +/- 7.5, C: 13.3 +/- 6.1 Delta E; ANOVA: p < 0.05). Conclusions: The incorporation of MUPB affects the mechanical properties of a denture base acrylic resin; however, the only significant change was observed for flexural strength and may not be critical. Color changes were slightly higher when resin containing MUPB was immersed in wine for a prolonged time; however, the difference has debatable clinical relevance.
Resumo:
The current trend toward minimal-invasive dentistry has introduced innovative techniques for cavity preparation. Chemical vapor deposition (CVD) and laser-irradiation technology have been employed as an alternative to the common use of regular burs in high-speed turbines. Objectives. The purpose of this study was to assess the influence of alternative techniques for cavity preparation on the bonding effectiveness of different adhesives to dentin, and to evaluate the morphological characteristics of dentin prepared with those techniques. Methods. One etch&rinse adhesive (OptiBond FL, Kerr) and three self-etch systems (Adper Prompt L-Pop, 3M ESPE; Clearfil SE Bond, Kuraray; Clearfil S3 Bond, Kuraray) were applied on dentin prepared with a regular bur in a turbine, with a CVD bur in a turbine, with a CVD tip in ultrasound and with an ErCr:YSGG laser. The micro-tensile bond strength (mu TBS) was determined after storage in water for 24 h at 37 degrees C, and morphological evaluation was performed by means of field -emission -gun scanning electron microscopy (Feg-SEM). Results. Feg-SEM evaluation revealed different morphological features on the dentin surface after the usage of both the conventional and alternative techniques for cavity preparation, more specifically regarding smear-layer thickness and surface roughness. CVD bur-cut, CVD ultra-sonoabraded and laser-irradiated dentin resulted in lower mu TBSs than conventionally bur-cut dentin, irrespective of the adhesive employed. Significance. The techniques, such as CVD diamond-bur cutting, CVD diamond ultra-sonoabrasion and laser-irradiation, used for cavity preparation may affect the bonding effectiveness of adhesives to dentin, irrespective of their acidity or approach. (C) 2007 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
Purpose: In light of the concept of minimally invasive dentistry, erbium lasers have been considered as an alternative technique to the use of diamond burs for cavity preparation. The purpose of this study was to assess the bonding effectiveness of adhesives to Er,Cr:YSGG laser-irradiated dentin using irradiation settings specific for cavity preparation. Materials and Methods: Fifty-four midcoronal dentin surfaces, obtained from sound human molars, were irradiated with an Er,Cr:YSGG laser or prepared with a diamond bur using a high-speed turbine. One etch-and-rinse (Optibond FL/Kerr) and three self-etching adhesives (Adper Prompt L-Pop/3M ESPE, Clearfil SE Bond/Kuraray, and Clearfil S-3 Bond/Kuraray) were used to bond the composite to dentin. The microtensile bond strength (mu TBS) was determined after 24 h of storage in water at 37 degrees C. The Kruskal-Wallis test was used to determine pairwise statistical differences (p < 0.05). Prepared dentin surfaces, adhesive interfaces, and failure patterns were analyzed using a stereo microscope and Field-emission gun Scanning Electron Microscopy (Feg-SEM). Results: Significantly lower mu TBS was observed to laser-irradiated than to bur-cut dentin (p < 0.05), irrespective of the adhesive employed. Feg-SEM photomicrographs of lased dentin revealed an imbricate patterned substrate and the presence of microcracks at the dentin surface. Conclusion: Morphological alterations produced by Er,Cr:YSGG laser-irradiation adversely influence the bonding effectiveness of adhesives to dentin. Keywords: dentin, adhesion, adhesives, laser, ErCr:YSGG.
Resumo:
Voluntary physical activity improves memory and learning ability in rodents, whereas status epilepticus has been associated with memory impairment. Physical activity and seizures have been associated with enhanced hippocampal expression of BDNF, indicating that this protein may have a dual role in epilepsy. The influence of voluntary physical activity on memory and BDNF expression has been poorly studied in experimental models of epilepsy. In this paper, we have investigated the effect of voluntary physical activity on memory and BDNF expression in mice with pilocarpine-incluced epilepsy. Male Swiss mice were assigned to four experimental groups: pilocarpine sedentary (PS), pilocarpine runners (PRs), saline sedentary (SS) and saline runners (SRs). Two days after pilocarpine-induced status epilepticus, the affected mice (PR) and their running controls (SR) were housed with access to a running wheel for 28 days. After that, the spatial memory and the expression of the precursor and mature forms of hippocampal BDNF were assessed. PR mice performed better than PS mice in the water maze test. In addition, PR mice had a higher amount of mature BDNF (14 kDa) relative to the total BDNF (14 kDa + 28 kDa + 32 kDa forms) content when compared with PS mice. These results show that voluntary physical activity improved the spatial memory and increased the hippocampal content of mature BDNF of mice with pilocarpine-induced status epilepticus. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A modified version of the social habituation/dis-habituation paradigm was employed to examine social recognition memory in Wistar rats during two opposing (active and inactive) circadian phases, using different intertrial intervals (30 and 60 min). Wheel-running activity was monitored continuously to identify circadian phase. To avoid possible masking effects of the light-dark cycle, the rats were synchronized to a skeleton photoperiod, which allowed testing during different circadian phases under identical lighting conditions. In each trial, an infantile intruder was introduced into an adult`s home-cage for a 5-minute interaction session, and social behaviors were registered. Rats were exposed to 5 trials per day for 4 consecutive days: oil days I and 2, each resident was exposed to the same intruder; on days 3 and 4, each resident was exposed to a different intruder in each trial. I he resident`s social investigatory behavior was more intense when different intruders were presented compared to repeated presentation of the same intruder, suggesting social recognition memory. This effect was stronger when the rats were tested during the inactive phase and when the intertrial interval was 60 min, These findings Suggest that social recognition memory, as evaluated in this modified habituation/dis-habituation paradigm, is influenced by the circadian rhythm phase during which testing is performed, and by intertrial interval. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
We performed a first principles total energy investigation on the structural, electronic, and magnetic properties of 3d-transition metal-encapsulated adamantane molecules (TM@C(10)H(16). with TM = Cr, Mn, Fe, Co, and Ni). We find that the C-C interactions are strong enough to maintain the molecular rigidity upon TM incorporation, although outward relaxations and formation energies are large. We built a microscopic model that explains the electronic structure of those molecules. (C) 2011 Elsevier B.V. All rights reserved.