83 resultados para core-shell-polymerization
Resumo:
Objectives. The purpose of this study was to evaluate how curing protocol affects the extent of polymerization of dual-cured resin cements. Methods. Four commercial resin cements were used (DuoLink, Panavia F 2.0, Variolink II and Enforce). The extent of polymerization of the resin cements cured under different conditions was measured using a (1)H Stray-Field MRI method, which also enabled to probe molecular mobility in the kHz frequency range. Results. Resin cements show well distinct behaviours concerning chemical cure. Immediate photo-activation appears to be the best choice for higher filler loaded resin cements (Panavia F 2.0 and Variolink). A photo-activation delay (5 min) did not induce any significant difference in the extent of polymerization of all cements. Significance. The extent of polymerization of dual-cured resin cements considerably changed among products under various curing protocols. Clinicians should optimize the materials choice taking into account the curing characteristics of the cements. (C) 2010 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Resumo:
This study evaluated the fracture resistance of endodontically treated teeth restored with prefabricated carbon fiber posts and varying quantities of coronal dentin. Sixty freshly extracted upper canines were randomly divided into groups of 10 teeth each. The specimens were exposed to 250,000 cycles in a controlled chewing simulator. All intact specimens were subjected to a static load (N) in a universal testing machine at 45 degrees to the long axis. Data were analyzed by 1-way analysis of variance and Tukey test (alpha = .05). Significant differences (P < .001) were found among the mean fracture forces of the test groups (positive control, 0 mm, 1 mm, 2 mm, 3 mm, and negative control groups: 1022.82 N, 1008.22 N, 1292.52 N, 1289.19 N, 1255.38 N, and 1582.11, respectively). These results suggested that the amount of coronal dentin did not significantly increase the fracture resistance of endodontically treated teeth restored with prefabricated carbon fiber post and composite resin core. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2008;106:e52-e57)
Resumo:
This study evaluated the stress levels at the core layer and the veneer layer of zirconia crowns (comprising an alternative core design vs. a standard core design) under mechanical/thermal simulation, and subjected simulated models to laboratory mouth-motion fatigue. The dimensions of a mandibular first molar were imported into computer-aided design (CAD) software and a tooth preparation was modeled. A crown was designed using the space between the original tooth and the prepared tooth. The alternative core presented an additional lingual shoulder that lowered the veneer bulk of the cusps. Finite element analyses evaluated the residual maximum principal stresses fields at the core and veneer of both designs under loading and when cooled from 900 degrees C to 25 degrees C. Crowns were fabricated and mouth-motion fatigued, generating master Weibull curves and reliability data. Thermal modeling showed low residual stress fields throughout the bulk of the cusps for both groups. Mechanical simulation depicted a shift in stress levels to the core of the alternative design compared with the standard design. Significantly higher reliability was found for the alternative core. Regardless of the alternative configuration, thermal and mechanical computer simulations showed stress in the alternative core design comparable and higher to that of the standard configuration, respectively. Such a mechanical scenario probably led to the higher reliability of the alternative design under fatigue.
Resumo:
Objectives: The purpose of this in vitro study was to evaluate the Vickers hardness (VHN) of a Light Core (Bisco) composite resin after root reinforcement, according to the light exposure time, region of intracanal reinforcement and lateral distance from the light-transmitting fibre post. Methods: Forty-five 17-mm long roots were used. Twenty-four hours after obturation, the root canals were emptied to a depth of 12 mm and the root dentine was artificially flared to produce a 1 mm space between the fibre post and the canal walls. The roots were bulk restored with the composite resin, which was photoactivated through the post for 40 s (G1, control), 80 s (G2) or 120 s (G3). Twenty-four hours after post-cementation, the specimens were sectioned transversely into three slices at depths of 2, 6 and 10 mm, corresponding to the coronal, middle and apical regions of the reinforced root. Composite VHN was measured as the average of three indentations (100 g/15 s) in each region at lateral distances of 50, 200 and 350 mu m from the cement/post-interface. Results: Three-way analysis of variance (alpha = 0.05) indicated that the factors time, region and distance influenced the hardness and that the interaction time x region was statistically significant (p = 0.0193). Tukey`s test showed that the mean VHN values for G1 (76.37 +/- 8.58) and G2 (74.89 +/- 6.28) differed significantly from that for G3 (79.5 +/- 5.18). Conclusions: Composite resin hardness was significantly lower in deeper regions of root reinforcement and in lateral areas distant from the post. Overall, a light exposure time of 120 s provided higher composite hardness than the shorter times (40 and 80 s). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: This study evaluated the effect of different microwave polymerization cycles on the color changes of a microwave-processed denture base resin after accelerated aging and immersion in beverages. Materials and Methods: Specimens of light pink acrylic resin were divided into three groups according to polymerization cycle: (A) 500 W for 3 minutes, (B) 90 W for 13 minutes + 500 W for 90 seconds, and (C) 320 W for 3 minutes + 0 W for 4 minutes + 720 W for 3 minutes. Control groups were a heat-processed acrylic resin (T) and a chemically activated denture repair resin (Q). Eight specimens per group were aged in an artificial aging chamber and evaluated at 20, 192, and 384 hours. Another series of 40 specimens per group were immersed in water, coffee, tea, cola, or red wine and evaluated at 1, 12, and 36 days. Color was measured by a spectrophotometer before and after aging or immersion. Color changes (Delta E) were analyzed by ANOVA/Bonferroni t-test (alpha = 0.05). Results: Mean Delta E (+/- SD) after 384 hours of accelerated aging were (A) 2.51 +/- 0.50; (B) 3.16 +/- 1.09; (C) 2.89 +/- 1.06; (T) 2.64 +/- 0.34; and (Q) 9.03 +/- 0.40. Group Q had a significantly higher Delta E than the other groups. Color changes of immersed specimens were significantly influenced by solutions and time, but the five groups showed similar values. Mean Delta E at 36 days were (water) 1.4 +/- 0.8; (coffee) 1.3 +/- 0.6; (tea) 1.7 +/- 0.5; (cola) 1.4 +/- 0.7; and (red wine) 10.2 +/- 2.7. Results were similar among the five test groups. Conclusions: Color changes of the microwave-polymerized denture base resin tested were not affected by different polymerization cycles after accelerated aging or immersion in beverages. These changes were similar to the conventional heat-polymerized acrylic resin test, but lower than the repair resin after accelerated aging.
A study of the chemical and physical properties of cashew nut shell ash for use in cement materials.
Resumo:
A study of the chemical and physical properties of cashew nut shell ash for use in cement materials. Ash occupies a prominent place among agro-industrial wastes, as it is derived from energy generation processes. Several types of ash have pozzolanic reactivity, and might be used as replacement material for cement, resulting in less energy waste and lower cost. This work aimed to investigate the physical and chemical properties of the cashew nut shell ash (CNSA), by performing the following measurement tests: chemical analysis, bulk density, specific mass, leaching and solubilization process, X-ray diffraction (XrD), specific surface area (BET) and pozzolanicity analysis with cement and lime. The results indicate a low reactivity of CNSA and the presence of heavy metals, alkalis and phenol.
Resumo:
TNF alpha is an important mediator of catabolism in cachexia. Most of its effects have been characterized in peripheral tissues, such as skeletal muscle and fat. However, by acting directly in the hypothalamus, TNF alpha can activate thermogenesis and modulate food intake. Here we show that high concentration TNF alpha in the hypothalamus leads to increased O(2) consumption/CO(2) production, increased body temperature, and reduced caloric intake, resulting in loss of body mass. Most of the thermogenic response is produced by beta 3-adrenergic signaling to the brown adipose tissue (BAT), leading to increased BAT relative mass, reduction in BAT lipid quantity, and increased BAT mitochondria density. The expression of proteins involved in BAT thermogenesis, such as beta 3-adrenergic receptor, peroxisomal proliferator-activated receptor-gamma coactivator-1 alpha, and uncoupling protein-1, are increased. In the hypothalamus, TNF alpha produces reductions in neuropeptide Y, agouti gene-related peptide, proopiomelanocortin, and melanin-concentrating hormone, and increases CRH and TRH. The activity of the AMP-activated protein kinase signaling pathway is also decreased in the hypothalamus of TNF alpha-treated rats. Upon intracerebroventricular infliximab treatment, tumor-bearing and septic rats present a significantly increased survival. In addition, the systemic inhibition of beta 3-adrenergic signaling results in a reduced body mass loss and increased survival in septic rats. These data suggest hypothalamic TNF alpha action to be important mediator of the wastage syndrome in cachexia. (Endocrinology 151: 683-694, 2010)
Resumo:
Novel bisbenzimidazoles (4-6), characterized by 3,4-ethylenedioxy-extension of thiophene core, revealed pronounced affinity and strong thermal stabilization effect toward ds-DNA. They interact within ds-DNA grooves as dimmers or even oligomers and agglomerate along ds-RNA. Compounds 4-6 have shown moderate to strong antiproliferative effect toward panel of eight carcinoma cell lines. Compound 5 displayed the best inhibitory potential and in equitoxic concentration (IC(50) = 1 x 10 (6) M) induced accumulation of cells in G2/M phase after 48 h of incubation. Fluorescence microscopy showed that 5 entered into live HeLa cells within 30 min, but did not accumulate in nuclei even after 2.5 h. Compound 5 inhibited the growth of Trypanosome cruzi epimastigotes (IC(50) = 4.3 x 10 (6) M). (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Alfven eigenmodes (AE) driven by ion cyclotron resonance heating are usually registered by different diagnostic channels in the hot core plasmas of large tokamaks like JET and ASDEX Upgrade. These AE appear very near to the extremum points of Alfven wave continuum, which is modified by the geodesic effect due to poloidal mode coupling. It is shown that the AE spectrum may be explored as the magnetic spectroscopy (like Alfven cascades by Sharapov et al 2001 Phys. Lett. A 289 127) to determine the q-factor minimum and geodesic frequency at the magnetic axis in standard sawtoothed discharges without reversed shear.
Resumo:
The aim of this study was to assess the relation between the number of free radicals generated and the polymerization depth in two different commercial brands of resin composites with different colors and translucence. Electron paramagnetic resonance quantified the radical populations through relative intensity (I (r)) of free radicals generated, and radical decay was monitored. Sample translucence and the classical polymerization depth were measured. The analysis indicated that resin with more color pigments (MA4, I (r) = 0.73 a.u) or more opacity components (ODA2, I (r) = 0.84 a.u) generated smaller populations of free radicals and have the lower polymerization depth than clearer (M, I (r) = 1.20 a.u and MA2, I (r) = 1.02) or more translucent (OEA2, I (r) = 1.00 a.u) composites for the same light-curing time. It seems that irradiation doses have to be adequate to more colored and less translucent resins.
Resumo:
The evidence of successful growth of Mn-doped PbS (Pb(1-x)Mn(x)S) nanocrystals (NCs) in SiO(2)-Na(2)CO(3)-Al(2)O(3)-PbO(2)-B(2)O(3) template, using the fusion method, is reported on in this study. The as-grown Pb(1-x)Mn(x)S NC is characterized using optical absorption, electron paramagnetic resonance, and atomic force microscopy. The data are discussed in terms of two distinct scenarios, namely a core-doped and a shell-doped nanostructure. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this study was to evaluate the influence of different light sources and photo-activation methods on degree of conversion (DC%) and polymerization shrinkage (PS) of a nanocomposite resin (Filtek (TM) Supreme XT, 3M/ESPE). Two light-curing units (LCUs), one halogen-lamp (QTH) and one light-emitting-diode (LED), and two different photo-activation methods (continuous and gradual) were investigated in this study. The specimens were divided in four groups: group 1-power density (PD) of 570 mW/cm(2) for 20 s (QTH); group 2-PD 0 at 570 mW/cm(2) for 10 s + 10 s at 570 mW/cm(2) (QTH); group 3-PD 860 mW/cm(2) for 20 s (LED), and group 4-PD 125 mW/cm(2) for 10 s + 10 s at 860 mW/cm(2) (LED). A testing machine EMIC with rectangular steel bases (6 x 1 x 2 mm) was used to record the polymerization shrinkage forces (MPa) for a period that started with the photo-activation and ended after two minutes of measurement. For each group, ten repetitions (n = 40) were performed. For DC% measurements, five specimens (n = 20) for each group were made in a metallic mold (2 mm thickness and 4 mm diameter, ISO 4049) and them pulverized, pressed with bromide potassium (KBr) and analyzed with FT-IR spectroscopy. The data of PS were analyzed by Analysis of Variance (ANOVA) with Welch`s correction and Tamhane`s test. The PS means (MPa) were: 0.60 (G1); 0.47 (G2); 0.52 (G3) and 0.45 (G4), showing significant differences between two photo-activation methods, regardless of the light source used. The continuous method provided the highest values for PS. The data of DC% were analyzed by Analysis of Variance (ANOVA) and shows significant differences for QTH LCUs, regardless of the photo-activation method used. The QTH provided the lowest values for DC%. The gradual method provides lower polymerization contraction, either with halogen lamp or LED. Degree of conversion (%) for continuous or gradual photo-activation method was influenced by the LCUs. Thus, the presented results suggest that gradual method photo-activation with LED LCU would suffice to ensure adequate degree of conversion and minimum polymerization shrinkage.
Resumo:
Two-photon polymerization is a powerful tool for fabricating three-dimensional micro/nano structures for applications ranging from nanophotonics to biology. To tailor such structure for specific purposes it is often important to dope them. In this paper we report on the fabrication of structures, with nanometric surface features (resolution of approximately 700 nm), using two-photon polymerization of an acrylic resin doped with the biocompatible polymer chitosan using a guest-host scheme. The fluorescence background in the Raman spectrum indicates the presence of chitosan throughout the structure. Mechanical characterization reveals that chitosan does not affect the mechanical properties of the host acrylic resin and, consequently, the structures exhibit excellent integrity. The approach presented in this work can be used in the fabrication of micro- and nanostructures containing biopolymers for biomedical applications.
Resumo:
Dental composite resins possess good esthetic properties, and are currently among the most popular dental restorative materials. Both organic and inorganic phases might influence the material behavior, the filler particle features and rate are the most important factors related to improvement of the mechanical properties of resin composites. Thus, the objective of this study was to evaluate the effect of three different composite resins on the polymerization process by Vickers hardness test. The samples were prepared using three different composite resins, as follow: group I-P-60 (3M/ESPE); group II-Herculite XRV (Kerr), and group III-Durafill (Heraeus-Kulzer). The samples were made in a polytetrafluoroethylene mould, with a rectangular cavity measuring 7 mm in length, 4 mm in width, and 3 mm in thickness. The samples were photo-activated by one light-curing unit based on blue LEDs (Ultrablue III-DMC/Brazil) for 20 and 40 s of irradiation times. The Vickers hardness test was performed 24 h after the photo-activation until the standardized depth of 3 mm. The Vickers hardness mean values varied from 158.9 (+/- 0.81) to 81.4 (+/- 1.94) for P-60, from 138.7 (+/- 0.37) to 61.7 (+/- 0.24) for Herculite XRV, and from 107. 5 (+/- 0.81) to 44.5 (+/- 1.36) for Durafill composite resins photo-activated during 20 s for the 1st and 2nd mm, respectively. During 40 s of photo-activation, the Vickers hardness mean values were: from 181.0 (+/- 0.70) to 15.6 (+/- 0.29) for P-60, and from 161.8 (+/- 0.41) to 11.2 (+/- 0.17) for Herculite XRV composite resins, for the 1st and 3th mm, respectively. For Durafill composite resin the mean values varied from 120.1 (+/- 0.66) to 61.7 (+/- 0.20), for the 1st and 2nd mm, respectively. The variation coefficient (CV) was in the most of the groups lower than 1%, then the descriptive statistic analysis was used. The Vickers hardness mean values for Durafill were lower than P-60 and Herculite XRV composite resins for 20 and 40 s of irradiation time. The polymerization process was greatly affected by the composition of the composite resins.
Resumo:
This paper discusses the ongoing ethnoarchaeological research carried out in Yamana shell middens of Tierra del Fuego. Ethnoarchaeology is used in this research as a tool to improve the archaeological methodology by testing it against anthropological, ethnographical and ethnological sources for achieving more accurate reconstructions of past societies. The ethnographical/ethnological information also is coupled with an experimental approach devised to understand physical and social processes, such as site formation processes and resource use and management. Specifically, this experimental approach was applied to the archaeological sites Tunel VII and Lanashuaia I (Tierra del Fuego, Argentina). (C) 2011 Elsevier Ltd and INQUA. All rights reserved.