66 resultados para authenticity label
Resumo:
The investigation was centered on the morphological features of the conjunctiva-cornea transition (limbus) of the rabbit eye and the proliferative behavior of its epithelium. The eyes were processed for examination with light and electron microscopy, as well as for autoradiography after intravitreal injection of [H-3]thymidine ([H-3]TdR). At the sites of extraocular muscle insertion, the vascularization of the stroma extended to the peripheral cornea, and the limbal epithelium was thin with its basal stratum made up by clear cuboidal cells. In between the muscle insertions, the cuboidal clear cells, as well as the stroma blood vessels; were scarce. At the light microscope level, the basement membrane was distinct in the cornea but not in the limbus or the conjunctiva. Autoradiographs demonstrated that, at the limbus, the basal cells migrated very quickly to the suprabasal region and remained there up to the 28-day interval. Labeled cells were identified in all epithelial layers of the cornea, including the basal one, at 21 and 28 days but not in the limbal basal clear cells. The rate of renewal of conjunctival epithelium was similar to that observed for the transition with scarce clear cells. The high-resolution autoradiographs demonstrated that the basal cuboidal clear limbal cells exhibit a quick renewal and that they are not label-retaining cells. These latter ones were detected all over the corneal epithelium and in the suprabasal layers of the limbus up to 28 days, in physiological conditions, without the need of stimulation by damage to the corneal epithelium.
Resumo:
Purpose: To evaluate the short-term (10 months) safety of a single intravitreal injection of autologous bone marrow-derived mononuclear cells in patients with retinitis pigmentosa or cone-rod dystrophy. Methods: A prospective, Phase I, nonrandomized, open-label study including 3 patients with retinitis pigmentosa and 2 patients with cone-rod dystrophy and an Early Treatment Diabetic Retinopathy Study best-corrected visual acuity of 20/200 or worse. Evaluations including best-corrected visual acuity, full-field electroretinography, kinetic visual field (Goldman), fluorescein and indocyanine green angiography, and optical coherence tomography were performed at baseline and 1, 7, 13, 18, 22, and 40 weeks after intravitreal injection of 10 X 10(6) autologous bone marrow-derived mononuclear cells (0.1 mL) into 1 study eye of each patient. Results: No adverse event associated with the injection was observed. A 1-line improvement in best-corrected visual acuity was measured in 4 patients 1 week after injection and was maintained throughout follow-up. Three patients showed undetectable electroretinography responses at all study visits, while 1 patient demonstrated residual responses for dark-adapted standard flash stimulus (a wave amplitude approximately 35 mu V), which remained recordable throughout follow-up, and 1 patient showed a small response (a wave amplitude approximately 20 mu V) recordable only at Weeks 7, 13, 22, and 40. Visual fields showed no reduction (with a Goldman Standard V5e stimulus) for any patient at any visit. No other changes were observed on optical coherence tomography or fluorescein and indocyanine green angiograms. Conclusion: Intravitreal injection of autologous bone marrow-derived mononuclear cells in eyes with advanced retinitis pigmentosa or cone-rod dystrophy was associated with no detectable structural or functional toxicity over a period of 10 months. Further studies are required to investigate the role, if any, of autologous bone marrow-derived mononuclear cell therapy in the management of retinal dystrophies. RETINA 31: 1207-1214, 2011
Resumo:
This study was aimed to determine whether imipramine chronic treatment promotes neurogenesis in the dentate gyrus (DG) and interferes with neuronal death in the CA1 subfield of the hippocampus after transient global cerebral ischemia (TGCI) in rats. After TGCI, animals were treated with imipramine (20 mg/kg, i.p.) or saline during 14 days. 5-Bromo-2`-deoxyuridine-5`-monophosphate (BrdU) was injected 24 h after the last imipramine or saline injection to label proliferating cells. In order to confirm the effect of TGCI on neuronal death and cell proliferation, a group of animals was sacrificed 7 days after TGCI. Neurogenesis and neurodegeneration were evaluated by doublecortin (DCX)-immunohistochemistry and Fluoro-Jade C (FJC)- staining, respectively. The rate of cell proliferation increases 7 days but returns to basal levels 14 days after TGCI. There was a significant increase in the number of FJC-positive neurons in the CA1 of animals 7 and 14 days after TGCI. Chronic imipramine treatment increased cell proliferation in the SGZ of DG and reduced the neurodegeneration in the CA] of the hippocampus 14 days after TGCI. Immunohistochemistry for DCX detected an increased number of newly generated neurons in the hippocampal DG 14 days after TGCI, which was not affected by imipramine treatment. Further studies are needed to evaluate whether imipramine treatment for longer time would be able to promote survival of newly generated neurons as well as to improve functional recovery after TGCI. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
The main objective of this experiment is to determine the amount of nicotine in commercial brand cigarettes by means of a nonaqueous acid-base titration. A simple glass device simulating a smoker is proposed, which allows the determination of the volatilized, filter retained, and inhaled portions. Students will readily see that the amount of nicotine/cigarette stated on the label (similar to 0.5-1.0 mg) refers indeed to the inhaled portion only, rather than to the total amount/cigarette (usually more than 10 mg). Even so, values for inhaled nicotine may be significantly higher than those reported for several brands. Students will also be able to make a critical evaluation of the true content of nicotine in the inhaled portion and confront it with the reported value for a given brand. In addition, the theoretical approach, supported by HPLC data, provides an excellent experience on nonaqueous acid-base volumetric analysis.
Resumo:
Bovine Herpesvirus type-5 (BoHV-5), which is potentially neuropathogenic, was recently described to be related with reproductive disorders in cows. The objective was to elucidate mechanisms involved in propagation of BoHV-5 in embryonic cells. For this purpose, bovine embryos produced in vitro were assayed for apoptotic markers after experimental infection of oocytes, in vitro fertilization, and development. Host DNA fragmentation was detected with a TUNEL assay, expression of annexin-V was measured with indirect immunofluorescence, and viral DNA was detected with in situ hybridization. Infective BoHV-5 virus was recovered from embryos derived from exposed oocytes after two consecutive passages on Madin-Darby bovine kidney (MDBK) cells. The viral DNA corresponding to US9 gene, localized between nucleotides 126243 to 126493, was detected in situ and amplified. There was no significant difference between the ratio of TUNEL stained nuclei and total cells in good quality blastocysts (0.87 +/- 0.05, mean SD), but there were differences (P < 0.05) between infected (0.18 +/- 0.05) and uninfected blastocysts (0.73 +/- 0.07). The Annexin-V label was more intense in uninfected embryos (0.79 +/- 0.04; P < 0.05). The quality of infected and uninfected embryos was considered equal, with no significant effect on embryonic development. In conclusion, we inferred that BoHV-5 infected bovine oocytes, replicated, and suppressed some apoptotic pathways, without significantly affecting embryonic development. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Prolactin (PRL) is tonically inhibited by dopamine (DA) released from neurons in the arcuate and periventricular nuclei. Kisspeptin plays a pivotal role in LH regulation. In rodents, kisspeptin neurons are found mostly in the anteroventral periventricular and arcuate nuclei, but the physiology of arcuate kisspeptin neurons is not completely understood. We investigated the role of kisspeptin in the control of hypothalamic DA and pituitary PRL secretion in adult rats. Intracerebroventricular kisspeptin-10 (Kp-10) elicited PRL release in a dose-dependent manner in estradiol (E2)-treated ovariectomized rats (OVX+E2), whereas no effect was found in oil-treated ovariectomized rats (OVX). Kp-10 increased PRL release in males and proestrous but not diestrous females. Associated with the increase in PRL release, intracerebroventricular Kp-10 reduced Fos-related antigen expression in tyrosine hydroxylase-immunoreactive (ir) neurons of arcuate and periventricular nuclei in OVX+E2 rats, with no effect in OVX rats. Kp-10 also decreased 3,4-dihydroxyphenylacetic acid concentration and 3,4-dihydroxyphenylacetic acid-DA ratio in the median eminence but not striatum in OVX+E2 rats. Double-label immunofluorescence combined with confocal microscopy revealed kisspeptin-ir fibers in close apposition to and in contact with tyrosine hydroxylase-ir perikarya in the arcuate. In addition, Kp-10 was not found to alter PRL release from anterior pituitary cell cultures regardless of E2 treatment. We provide herein evidence that kisspeptin regulates PRL release through inhibition of hypothalamic dopaminergic neurons, and that this mechanism is E2 dependent in females. These findings suggest a new role for central kisspeptin with possible implications for reproductive physiology. (Endocrinology 151: 3247-3257, 2010)