110 resultados para ab initio calculations
Resumo:
Several sesquiterpene lactone were synthesized and their inhibitive activities on phospholipase A(2) (PLA(2)) from Bothrops jararacussu venom were evaluated. Compounds Lac01 and Lac02 were efficient against PLA(2) edema-inducing, enzymatic and myotoxic activities and it reduces around 85% of myotoxicity and around 70% of edema-inducing activity. Lac05-Lac08 presented lower efficiency in inhibiting the biological activities studied and reduce the myotoxic and edema-inducing activities around only 15%. The enzymatic activity was significantly reduced. The values of inhibition constants (K(1)) for Lac01 and Lac02 were approximately 740 mu M, and for compounds Lac05-Lac08 the inhibition constants were approximately 7.622-9.240 mu M. The enzymatic kinetic studies show that the sesquiterpene lactones inhibit PLA(2) in a non-competitive manner. Some aspects of the structure-activity relationships (topologic, molecular and electronic parameters) were obtained using ab initio quantum calculations and analyzed by chemometric methods (HCA and PCA). The quantum chemistry calculations show that compounds with a higher capacity of inhibiting PLA(2) (Lac01-Lac04) present lower values of highest occupied molecular orbital (HOMO) energy and molecular volume (VOL) and bigger values of hydrophobicity (LogP). These results indicate some topologic aspects of the binding site of sesquiterpene lactone derivatives and PLA(2). (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The present work describes the crystal structure, vibrational spectra, and theoretical calculations of ammonium salts of 3,5-bis-(dicyanomethylene)cyclopentane-1,2,4-trionate, (NH(4))(2)(C(11)N(4)O(3)) [(NH(4))(2)CV], also known as ammonium croconate violet. This compound crystallizes in triclinic P (1) over bar and contains two water molecules per unit formula. The crystal packing is stabilized by hydrogen bonds involving water molecules and ammonium cations, giving rise to a 3D polymeric arrangement. In this structure, a pi-stacking interaction is not observed, as the smaller centroid-centroid distance is 4.35 angstrom. Ab initio electronic structure calculations under periodic boundary conditions were performed to predict vibrational and electronic properties. The vibrational analysis was used to assist the assignments of the Raman and infrared bands. The solid structure was optimized and characterized as a minimum in the potential-energy surface. The stabilizing intermolecular hydrogen bonds in the crystal Structure were characterized by difference charge-density analysis. The analysis of the density of states of (NH(4))(2)CV gives an energy gap of 1.4 eV with a significant contribution of carbon and nitrogen 2p states for valence and conduction bands.
Resumo:
The importance of the HSO(2) system in atmospheric and combustion chemistry has motivated several works dedicated to the study of associated structures and chemical reactions. Nevertheless controversy still exists in connection with the reaction SH + O(2) -> H + SO(2) and also related to the role of the HSOO isomers in the potential energy surface (PES). Here we report high-level ab initio calculation for the electronic ground state of the HSO(2) system. Energetic, geometric, and frequency properties for the major stationary states of the PES are reported at the same level of calculations:,CASPT2/aug-cc-pV(T+d)Z. This study introduces three new stationary points (two saddle points and one minimum). These structures allow the connection of the skewed HSOOs and the HSO(2) minima defining new reaction paths for SH + O(2) -> H + SO(2) and SH + O(2) -> OH + SO. In addition, the location of the HSOO isomers in the reaction pathways have been clarified.
Resumo:
Assuming the existence of a confined state of the electron in bulk water the polarizability of the hydrated electron is analyzed. Statistically uncorrelated supermolecular structures composed of seven water molecules (first solvation shell) with an extra electron were extracted from classical Monte Carlo simulation and used in quantum mechanical second-order Moller-Plesset calculations. It is found that the bound excess electron contributes with 274 a.u. to the total dipole polarizability of 345 a.u. for (H(2)O)(7)(-). From the calculated polarizabilities the Rayleigh elastic light scattering properties are inferred and found to considerably enhance activity and light depolarization. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The possible ways for glycine oligopeptide formation in gas phase, both in the extended P-strand like conformation and folded 2(7)-ribbon like conformations are analyzed using quantum chemical calculations. We focus on the sequential formation of peptide bond through upgradation of the immediate lower order molecule and observe the consequences in other related processes like oligoglycine formation through simultaneous peptide linkage of n glycine monomers and interchange of molecular conformation through peptide linkage. A comparison is made between the structures and binding energies obtained for both conformers. All binding energies are increased by the zero-point energy contribution. The role of electron correlation effects is briefly analyzed. The folded 2(7)-ribbon-like conformations in vacuo are found to be more stable in comparison to the extended structure. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
We apply a self-energy-corrected local density approximation (LDA) to obtain corrected bulk band gaps and to study the band offsets of AlAs grown on GaAs (AlAs/GaAs). We also investigate the Al(x)Ga(1-x)As/GaAs alloy interface, commonly employed in band gap engineering. The calculations are fully ab initio, with no adjustable parameters or experimental input, and at a computational cost comparable to traditional LDA. Our results are in good agreement with experimental values and other theoretical studies. Copyright (C) EPLA, 2011
Resumo:
The use of the spin of the electron as the ultimate logic bit-in what has been dubbed spintronics-can lead to a novel way of thinking about information flow. At the same time single-layer graphene has been the subject of intense research due to its potential application in nanoscale electronics. While defects can significantly alter the electronic properties of nanoscopic systems, the lack of control can lead to seemingly deleterious effects arising from the random arrangement of such impurities. Here we demonstrate, using ab initio density functional theory and non-equilibrium Green`s functions calculations, that it is possible to obtain perfect spin selectivity in doped graphene nanoribbons to produce a perfect spin filter. We show that initially unpolarized electrons entering the system give rise to 100% polarization of the current due to random disorder. This effect is explained in terms of different localization lengths for each spin channel which leads to a new mechanism for the spin filtering effect that is disorder-driven.
Resumo:
We report results on the electronic, vibrational, and optical properties of SnO(2) obtained using first-principles calculations performed within the density functional theory. All the calculated phonon frequencies, real and imaginary parts of complex dielectric function, the energy-loss spectrum, the refractive index, the extinction, and the absorption coefficients show good agreement with experimental results. Based on our calculations, the SnO(2) electron and hole effective masses were found to be strongly anisotropic. The lattice contribution to the low-frequency region of the SnO(2) dielectric function arising from optical phonons was also determined resulting the values of E > (1aSyen) (latt) (0) = 14.6 and E > (1ayen) (latt) (0) = 10.7 for directions perpendicular and parallel to the tetragonal c-axis, respectively. This is in excellent agreement with the available experimental data. After adding the electronic contribution to the lattice contribution, a total average value of E >(1)(0) = 18.2 is predicted for the static permittivity constant of SnO(2).
Resumo:
By using the time-differential perturbed angular correlation technique, the electric field gradients (EFG) at (181)Hf/(181)Ta and (111)In/(111)Cd probe sites in the MoSi(2)-type compound Ti(2)Ag have been measured as a function of temperature in the range from 24 to 1073 K. Ab initio EFG calculations have been performed within the framework of density functional theory using the full-potential augmented plane wave + local orbitals method as implemented in the WIEN2k package. These calculations allowed assignments of the probe lattice sites. For Ta, a single well-defined EFG with very weak temperature dependence was established and attributed to the [4(e)4mm] Ti site. For (111)Cd probes, two of the three measured EFGs are well defined and correlated with substitutional lattice sites, i.e. both the [4(e)4mm] Ti site and the [2(a)4/mmm] Ag site.
Resumo:
The introduction of high-permittivity gate dielectric materials into complementary metal oxide semiconductor technology has reopened the interest in Ge as a channel material mainly due to its high hole mobility. Since HfO(2) and ZrO(2) are two of the most promising dielectric candidates, it is important to investigate if Hf and Zr may diffuse into the Ge channel. Therefore, using ab initio density functional theory calculations, we have studied substitutional and interstitial Hf and Zr impurities in c-Ge, looking for neutral defects. We find that (i) substitutional Zr and Hf defects are energetically more favorable than interstitial defects; (ii) under oxygen-rich conditions, neither Zr nor Hf migration towards the channel is likely to occur; (iii) either under Hf- or Zr-rich conditions it is very likely, particularly for Zr, that defects will be incorporated in the channel.
Resumo:
This study reports the results of ab initio electronic and optical calculations for pure socialite crystal using the linear augmented plane wave (LAPW) method within density functional theory (DFT). The calculated electronic structure revealed predominantly orbital characters of the valence band and the conduction band, and enabled us to determine the type and the value of the fundamental gap of the compound. The imaginary part of the dielectric tensor, extinction coefficient and refraction index were calculated as functions of the incident radiation wavelength. It is shown that the O 2p states and Na 3s states play the major role in optical transitions as initial and final states, respectively. The absorption spectrum is localized in the ultraviolet range between 40 and 250 nm. Furthermore, we concluded that the material does not absorb radiation in the visible range. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
In this study, the molecular structure and conformational analyses of the 4-isopropylthioxanthone (4-ITX) are reported according to experimental and theoretical results. The compound crystallizes in the centrosymmetric P (1) over bar space group with only one molecule in the asymmetric unit, presenting the most stable conformation, in which the three fused-rings adopt a planar geometry, and the isopropyl group assumes a torsional angle with less sterical hindrance. The structural and conformational analyses were performed using theoretical calculations such as Hartree-Fock (HF), DFT method in combination with 6-311G(d,p) and 6-31++G(d,p) and the results were compared with infrared spectroscopy (FT-IR) and X-ray diffraction (XRD). The supramolecular assembly of 4-ITX is kept by non-classical C-H center dot center dot center dot O hydrogen bonds and weak interactions such as pi-pi stacking. 4-ITX was also studied by (1)H and (13)C NMR spectroscopy. UV-Vis absorption spectroscopic properties of the 4-ITX showed the long-wavelength maximum shifts towards high energy when the solvent polarity increases. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The solvatochromic shift of the lowest singlet it pi -> pi* electronic transition in the all-trans, cis-13, cis-11, cis-9, and cis-7 retinal isomers were computed under the influence of water, methanol, and benzene solvents. Excitation energies were calculated in gas phase and in solution. The calculations in solution were performed considering the sequential Monte Carlo (MC) /Quantum Mechanical approach. The MC simulations were performed considering the full retinal isomer molecules and 900 water molecules, 900 methanol, or 400 benzene ones. The OPLS/AA parametrization was chosen for retinal, methanol, and benzene molecules and the SPC model was used for water one. From the MC calculations 100 independent configurations were selected, with 100 solvent molecules in thermodynamical equilibrium at T = 298.15 K. Average point-charges were obtained from those independent configurations for water, methanol, and benzene solvent. TDDFT and CASSCF//CASPT2 methodologies were used to compute the vertical excitation energy of the retinal isomers in different environment. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 110: 2076-2087, 2010
Resumo:
Solvatochromic and ionochromic effects of the iron(II)bis(1,10-phenanthroline)dicyano (Fe(phen)(2)(CN)(2)) complex were investigated by means of combined DFT/TDDFT calculations using the PBE and B3LYP functionals. Extended solvation models of Fe(phen)(2)(CN)(2) in acetonitrile and aqueous solution, as well as including interaction with Mg(2+), were constructed. The calculated vertical excitation energies reproduce well the observed solvatochromism in acetonitrile and aqueous solutions, the ionochromism in acetonitrile in the presence of Mg(2+), and the absence of ionochromic effect in aqueous solution. The vertical excitation energies and the nature of the transitions were reliably predicted after inclusion of geometry relaxation upon aqueous micro- and global solvation and solvent polarization effect in the TDDFT calculations. The two intense UV-vis absorption bands occurring for all systems studied are interpreted as transitions from a hybrid Fe(II)(d)/cyano N(p) orbital to a phenanthroline pi* orbital rather than a pure metal-to-ligand-charge transfer (MLCT). The solvatochromic and ionochromic blue band shifts of Fe(phen)(2)(CN)(2) were explained with preferential stabilization of the highest occupied Fe(II)(d)/cyano N(p) orbitals as a result of specific interactions with water solvent molecules or Mg(2+) ions in solution. Such interactions occur through the CN(-) groups in the complex, and they have a decisive role for the observed blue shifts of UV-vis absorption bands.
Resumo:
The analysis of the IR carbonyl band of the N-methoxy-N-methyl-2-[(4`-substituted)phenyisulfonyI]propanamides Y-PhSO(2)CH(Me)C(O)N(OMe)Me (Y = OMe 1, Me 2, H 3, Cl 4, NO(2) 5), supported by HF/6-31G(d,p) calculations of 3,, indicated the existence of two gauche conformers (g(1) and g(2)), the g, conformer being the most stable and the least polar one (in gas phase and in solution). Both conformers are present in solution of the non polar solvent (CCl(4)) for 1-5 and in solution of the more polar solvents (CHCl(3)) for 1. 4, 5 and (CH(2)Cl(2)) for 5, while only the g(1) conformer is present in solution of the most polar solvent (CH(3)CN) for 1-5. The g, and g2 conformers correspond to the enantiomeric pairs of diastereomers (diast(1) and diast(2)) whose relative configurations are [C(3)(R)N(R)]/[C(3)(s)N(s)] and [C(3)(R)N(s)]/[C(3)(s)N(R)], respectively. The computed carbonyl frequencies for g(1) (diast(1)) and g(2) (diast(2)) stereoisomers of3 match well the experimental values. The NBO analysis, for 3 shows the important role of the orbital interactions in conformer stabilization and the overall balance of these interactions corroborates that the g, conformer is more stable than the 92 one. The observed abnormal solvent effect on the relative intensities of the carbonyl doublet components is attributed to the molecular crowding in the g2 conformer which hinders its solvation in comparison to the g, conformer (diast(1)). X-ray single crystal analysis performed for 3 shows the existence Of two 92, and g(1b) conformers of diastereomers (diast2, and diast(1b)) whose absolute configurations are [C(3)(R)N(s)] and [C(3)(R)N(R)], respectively. The larger population and. thus, the larger stabilization of the g(2), conformer over the gib form in the crystals may be associated with a larger energy gain deriving from dipole moment coupling in the former conformer along with a series of C-H center dot center dot center dot O electrostatic and hydrogen bond interactions, (C) 2009 Elsevier B.V. All rights reserved.