132 resultados para Three laser heterodyne system
Resumo:
The aggregation of interacting Brownian particles in sheared concentrated suspensions is an important issue in colloid and soft matter science per se. Also, it serves as a model to understand biochemical reactions occurring in vivo where both crowding and shear play an important role. We present an effective medium approach within the Smoluchowski equation with shear which allows one to calculate the encounter kinetics through a potential barrier under shear at arbitrary colloid concentrations. Experiments on a model colloidal system in simple shear flow support the validity of the model in the concentration range considered. By generalizing Kramers' rate theory to the presence of shear and collective hydrodynamics, our model explains the significant increase in the shear-induced reaction-limited aggregation kinetics upon increasing the colloid concentration.
Resumo:
The quasi-elastic excitation function for the (17)O+(64)Zn system was measured at energies near and below the Coulomb barrier, at the backward angle theta(lab) = 161 degrees. The corresponding quasi-elastic barrier distribution was derived. The excitation function for the neutron stripping reactions was also measured, at the same angle and energies, and the experimental values of the spectroscopic factors were deduced by fitting the data. A reasonably good agreement was obtained between the experimental quasi-elastic barrier distribution with the coupled-channel calculations including a very large number of channels. Of the channels investigated, three dominated the coupling matrix: two inelastic channels, (64)Zn(2(1)(+)) and (17)O(1/(+)(2)), and one-neutron transfer channel, particularly the first one. On the other hand, a very good agreement is obtained when we use a nuclear diffuseness for the (17)O nucleus larger than the one for (16)O. We verify that quasi-elastic barrier distribution is a sensitive tool for determining nuclear matter diffuseness.
Resumo:
We present a broadband (460-980 nm) analysis of the nonlinear absorption processes in bulk ZnO, a large-bandgap material with potential blue-to-UV photonic device applications. Using an optical parametric amplifier we generated tunable 1-kHz repetition rate laser pulses and employed the Z-scan technique to investigate the nonlinear absorption spectrum of ZnO. For excitation wavelengths below 500 nm, we observed reverse saturable absorption due to one-photon excitation of the sample, agreeing with rate-equation modeling. Two-and three-photon absorption were observed from 540 to 980 nm. We also determined the spectral regions exhibiting mixture of nonlinear absorption mechanisms, which were confirmed by photoluminescence measurements. (C) 2010 Optical Society of America
Resumo:
Objective: The purpose of this study was to evaluate in vitro the Knoop microhardness (Knoop hardness number [KHN]) and the degree of conversion using FT-Raman spectroscopy of a light-cured microhybrid resin composite (Z350-3M-ESPE) Vita shade A3 photopolymerized with a halogen lamp or an argon ion laser. Background Data: Optimal polymerization of resin-based dental materials is important for longevity of restorations in dentistry. Materials and Methods: Thirty specimens were prepared and inserted into a disc-shaped polytetrafluoroethylene mold that was 2.0 mm thick and 3 mm in diameter. The specimens were divided into three groups (n = 10 each). Group 1 (G1) was light-cured for 20 sec with an Optilux 501 halogen light with an intensity of 1000 mW/cm(2). Group 2 (G2) was photopolymerized with an argon laser with a power of 150 mW for 10 sec, and group 3 (G3) was photopolymerized with an argon laser at 200 mW of power for 10 sec. All specimens were stored in distilled water for 24 h at 37 degrees C and kept in lightproof containers. For the KHN test five indentations were made and a depth of 100 mu m was maintained in each specimen. One hundred and fifty readings were obtained using a 25-g load for 45 sec. The degree of conversion values were measured by Raman spectroscopy. KHN and degree of conversion values were obtained on opposite sides of the irradiated surface. KHN and degree of conversion data were analyzed by one-way ANOVA and Tukey tests with statistical significance set at p < 0.05. Results: The results of KHN testing were G1 = 37.428 +/- 4.765; G2 = 23.588 +/- 6.269; and G3 = 21.652 +/- 4.393. The calculated degrees of conversion (DC%) were G1 = 48.57 +/- 2.11; G2 = 43.71 +/- 3.93; and G3 = 44.19 +/- 2.71. Conclusions: Polymerization with the halogen lamp ( G1) attained higher microhardness values than polymerization with the argon laser at power levels of 150 and 200 mW; there was no difference in hardness between the two argon laser groups. The results showed no statistically significant different degrees of conversion for the polymerization of composite samples with the two light sources tested.
Resumo:
Cadmium is known to be a toxic agent that accumulates in the living organisms and present high toxicity potential over lifetime. Efforts towards the development of methods for microanalysis of environmental samples, including the determination of this element by graphite furnace atomic absorption spectrometry (GFAAS). inductively coupled plasma optical emission spectrometry (ICP OES), and inductively coupled plasma-mass spectrometry (ICP-MS) techniques, have been increasing. Laser induced breakdown spectroscopy (UBS) is an emerging technique dedicated to microanalysis and there is a lack of information dealing with the determination of cadmium. The aim of this work is to demonstrate the feasibility of LIBS for cadmium detection in soils. The experimental setup was designed using a laser Q-switched (Nd:YAG, 10 Hz, lambda = 1064 nm) and the emission signals were collimated by lenses into an optical fiber Coupled to a high-resolution intensified charge-coupled device (ICCD)-echelle spectrometer. Samples were cryogenically ground and thereafter pelletized before LIBS analysis. Best results were achieved by exploring a test portion (i.e. sampling spots) with larger surface area, which contributes to diminish the uncertainty due to element specific microheterogeneity. Calibration curves for cadmium determination were achieved using certified reference materials. The metrological figures of merit indicate that LIBS can be recommended for screening of cadmium contamination in soils. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A simultaneous optimization strategy based on a neuro-genetic approach is proposed for selection of laser induced breakdown spectroscopy operational conditions for the simultaneous determination of macronutrients (Ca, Mg and P), micro-nutrients (B, Cu, Fe, Mn and Zn), Al and Si in plant samples. A laser induced breakdown spectroscopy system equipped with a 10 Hz Q-switched Nd:YAG laser (12 ns, 532 nm, 140 mJ) and an Echelle spectrometer with intensified coupled-charge device was used. Integration time gate, delay time, amplification gain and number of pulses were optimized. Pellets of spinach leaves (NIST 1570a) were employed as laboratory samples. In order to find a model that could correlate laser induced breakdown spectroscopy operational conditions with compromised high peak areas of all elements simultaneously, a Bayesian Regularized Artificial Neural Network approach was employed. Subsequently, a genetic algorithm was applied to find optimal conditions for the neural network model, in an approach called neuro-genetic, A single laser induced breakdown spectroscopy working condition that maximizes peak areas of all elements simultaneously, was obtained with the following optimized parameters: 9.0 mu s integration time gate, 1.1 mu s delay time, 225 (a.u.) amplification gain and 30 accumulated laser pulses. The proposed approach is a useful and a suitable tool for the optimization process of such a complex analytical problem. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Laser induced breakdown spectroscopy (LIBS) has become an analytical tool for the direct analysis of a large variety of materials in order to provide qualitative and/or quantitative information. However, there is a lack of information for LIBS analysis of agricultural and environmental samples. In this work a LIBS system has been evaluated for the determination of macronutrients (P, K, Ca, Mg) in pellets of vegetal reference materials. An experimental setup was designed by using a Nd:YAG laser operating at 1064 nm and an Echelle spectrometer with ICCD detector. The plasma temperature was estimated by Boltzmann plots and instrumental paragmeters such as delay time, lens-to-sample distance and pulse energy were evaluated. Certified reference materials as well as reference materials were used for analytical calibrations of P, K, Ca, and Mg. Most results of the direct analysis of plant samples by LIBS were in reasonable agreement with those obtained by ICP OES after wet acid decomposition. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Soils are an important component in the biogeochemical cycle of carbon, storing about four times more carbon than biomass plants and nearly three times more than the atmosphere. Moreover, the carbon content is directly related on the capacity of water retention, fertility. among other properties. Thus, soil carbon quantification in field conditions is an important challenge related to carbon cycle and global climatic changes. Nowadays. Laser Induced Breakdown Spectroscopy (LIBS) can be used for qualitative elemental analyses without previous treatment of samples and the results are obtained quickly. New optical technologies made possible the portable LIBS systems and now, the great expectation is the development of methods that make possible quantitative measurements with LIBS. The goal of this work is to calibrate a portable LIBS system to carry out quantitative measures of carbon in whole tropical soil sample. For this, six samples from the Brazilian Cerrado region (Argisoil) were used. Tropical soils have large amounts of iron in their compositions, so the carbon line at 247.86 nm presents strong interference of this element (iron lines at 247.86 and 247.95). For this reason, in this work the carbon line at 193.03 nm was used. Using methods of statistical analysis as a simple linear regression, multivariate linear regression and cross-validation were possible to obtain correlation coefficients higher than 0.91. These results show the great potential of using portable LIBS systems for quantitative carbon measurements in tropical soils. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A novel flow-based strategy for implementing simultaneous determinations of different chemical species reacting with the same reagent(s) at different rates is proposed and applied to the spectrophotometric catalytic determination of iron and vanadium in Fe-V alloys. The method relies on the influence of Fe(II) and V(IV) on the rate of the iodide oxidation by Cr(VI) under acidic conditions, the Jones reducing agent is then needed Three different plugs of the sample are sequentially inserted into an acidic KI reagent carrier stream, and a confluent Cr(VI) solution is added downstream Overlap between the inserted plugs leads to a complex sample zone with several regions of maximal and minimal absorbance values. Measurements performed on these regions reveal the different degrees of reaction development and tend to be more precise Data are treated by multivariate calibration involving the PLS algorithm The proposed system is very simple and rugged Two latent variables carried out ca 95% of the analytical information and the results are in agreement with ICP-OES. (C) 2010 Elsevier B V. All rights reserved.
Resumo:
Governmental programmes should be developed to collect and analyse data on healthcare associated infections (HAIs). This study describes the healthcare setting and both the implementation and preliminary results of the Programme for Surveillance of Healthcare Associated Infections in the State of Sao Paulo (PSHAISP), Brazil, from 2004 to 2006. Characterisation of the healthcare settings was carried out using a national database. The PSHAISP was implemented using components for acute care hospitals (ACH) or long term care facilities (LTCF). The components for surveillance in ACHs were surgical unit, intensive care unit and high risk nursery. The infections included in the surveillance were surgical site infection in clean surgery, pneumonia, urinary tract infection and device-associated bloodstream infections. Regarding the LTCF component, pneumonia, scabies and gastroenteritis in all inpatients were reported. In the first year of the programme there were 457 participating healthcare settings, representing 51.1% of the hospitals registered in the national database. Data obtained in this study are the initial results and have already been used for education in both surveillance and the prevention of HAI. The results of the PSHAISP show that it is feasible to collect data from a large number of hospitals. This will assist the State of Sao Paulo in assessing the impact of interventions and in resource allocation. (C) 2010 The Hospital Infection Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
A process for preparing three-layer piezoelectrets from fluorinated ethylene-propylene (FEP) copolymer films is introduced. Samples are made from commercial FEP films by means of laser cutting, laser bonding, electrode evaporation, and high-field poling. The observed dielectric-resonance spectra demonstrate the piezoelectricity of the FEP sandwiches. Piezoelectric d (33) coefficients up to a few hundred pC/N are achieved. Charging at elevated temperatures can increase the thermal stability of the piezoelectrets. Isothermal experiments for approximately 15 min demonstrate that samples charged at 140A degrees C keep their piezoelectric activity up to at least 120A degrees C and retain 70% of their initial d (33) even at 130A degrees C. Acoustical measurements show a relatively flat frequency response in the range between 300 Hz and 20 kHz.
Resumo:
This paper presents a compact embedded fuzzy system for three-phase induction-motor scalar speed control. The control strategy consists in keeping constant the voltage-frequency ratio of the induction-motor supply source. A fuzzy-control system is built on a digital signal processor, which uses speed error and speed-error variation to change both the fundamental voltage amplitude and frequency of a sinusoidal pulsewidth modulation inverter. An alternative optimized method for embedded fuzzy-system design is also proposed. The controller performance, in relation to reference and load-torque variations, is evaluated by experimental results. A comparative analysis with conventional proportional-integral controller is also achieved.
Resumo:
This work presents the study and development of a combined fault location scheme for three-terminal transmission lines using wavelet transforms (WTs). The methodology is based on the low- and high-frequency components of the transient signals originated from fault situations registered in the terminals of a system. By processing these signals and using the WT, it is possible to determine the time of travelling waves of voltages and/or currents from the fault point to the terminals, as well as estimate the fundamental frequency components. A new approach presents a reliable and accurate fault location scheme combining some different solutions. The main idea is to have a decision routine in order to select which method should be used in each situation presented to the algorithm. The combined algorithm was tested for different fault conditions by simulations using the ATP (Alternative Transients Program) software. The results obtained are promising and demonstrate a highly satisfactory degree of accuracy and reliability of the proposed method.
Resumo:
An experimental laboratory was designed and assembled at the Botanical Institute of So Paulo, Brazil, in order to research atmosphere-plant interactions through the use of a system of fumigation chambers. A system of three ""closed"" fumigation chambers was designed to be used inside or outside the laboratory. The system was built to be used with a single pollutant or a mix of them. The innovation in this system is to allow chemical reactions inside the chambers that simulate atmospheric chemistry, especially photochemical processes involving high levels of ozone. Assessment of the performance and applicability of the system was based on the response of Nicotiana tabacum Bel W3 exposed to ozone produced alternatively by a generator and inside the chamber by reactions of its precursors. The results showed that the system can be well applied to the study of atmospheric chemistry interactions and the effects on plants.
Resumo:
The main objective of this work is to present an alternative boundary element method (BEM) formulation for the static analysis of three-dimensional non-homogeneous isotropic solids. These problems can be solved using the classical boundary element formulation, analyzing each subregion separately and then joining them together by introducing equilibrium and displacements compatibility. Establishing relations between the displacement fundamental solutions of the different domains, the alternative technique proposed in this paper allows analyzing all the domains as one unique solid, not requiring equilibrium or compatibility equations. This formulation also leads to a smaller system of equations when compared to the usual subregion technique, and the results obtained are even more accurate. (C) 2008 Elsevier Ltd. All rights reserved.