63 resultados para Single Phase Grid Connected Inverter


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of the interlayer coupling on formation of the quantized Hall conductor phase at the filling factor v = 2 was studied in the multi-layer GaAs/AlGaAs heterostructures. The disorder broadened Gaussian photoluminescence line due to the localized electrons was found in the quantized Hall phase of the isolated multi-quantum well structure. On the other hand, the quantized Hall phase of the weakly coupled multi-layers emitted an unexpected asymmetrical line similar to that one observed in the metallic electron systems. We demonstrated that the observed asymmetry is caused by a partial population of the extended electron states formed in the quantized Hall conductor phase due to the interlayer percolation. A sharp decrease of the single-particle scattering time associated with these extended states was observed at the filling factor v = 2. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of the present work is to report studies on structural phase transition for PMN-xPT ferroelectric, with melt PbTiO3 composition around the MPB (x = 0.35 mol %), using infrared spectroscopy technique. The study was centered on monitoring the behavior of the 1-(NbO), 1-(TiO) and 1-(MgO) stretching modes as a function of temperature. The increasing as a function of temperature for 1-(TiO) and 1-(MgO) modes, observed between 230 and 300 K, can be related to the monoclinic (MC) + tetragonal (T) phase coexistence in the PMN-PT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There has been increasing interest in the gas-phase reactivity of alkyl nitrates because of their well-known applications as explosives and because of then role in atmospheric and in marine processes This manuscript describes an experimental study by FT-ICR techniques of the gas-phase reactions of OH(-) and F(-) with methyl and ethyl Innate For methyl nitrate, the main reaction channel is found to be an elimination process promoted by abstraction of an a proton from the methyl group. Nucleophilic displacement of nitrate anion through an S(N)2 process at the carbon center Is also found to he an important reaction channel with methyl nitrate In ethyl nitrate, Ruination of NO(3)(-) is greatly enhanced and this is attributed to the ease of an E2-type elimination process promoted by proton abstraction at the beta position of the ethyl group. Theoretical calculations at the MP2/6-311+G(3df,2p)//MP2/6-31+G(d) level of theory ale consistent with the relative importance of the reaction channels and suggest that these reactions proceed through a double well potential The calculations also predict that nucleophilic attack by OH(-) at the nitrogen center (Sn2@N) is energetically the rueful ad pathway but experiments with (18)OH(-) showed no evidence for this channel. Single-point calculations reveal a strong preference for approach to the emboli center and may explain the lack of reactivity at the nitrogen center. Calculations were also carried out or NH(2)(-) and SH(-) to establish the reactivity pattern to provide a better understanding of environmentally relevant nitrate esters.