99 resultados para ROS and DNA damage
Resumo:
The systemic aspect of vascular damage induced by angiotensin II (ANG II) has been poorly explored in the literature. Considering the presence of ANG II and its specific receptor AT1, in several organs, all tissues might be potentially affected by its effects. The aims of this study were: To evaluate the early histological changes in the heart, liver and kidneys, produced by ANG II infusion, to evaluate the protective effect of losartan. Wistar rats were distributed into three groups: control (no treatment), treated with ANG II, and treated with ANG II + losartan. ANG II was continuously infused over 72 hours by subcutaneous osmotic pumps. Histological sections of the myocardium, kidneys and liver were stained and observed for the presence of necrosis. There were ANG II-induced perivascular inflammation and necrosis of the arteriolar wall in the myocardium, kidney, and liver by, which were partially prevented by losartan. There was no significant correlation between heart and kidney damage. Tissue lesion severity was lower than that of vascular lesions, without statistical difference between groups. ANG II causes vascular injury in the heart, kidneys and liver, indicating a systemic vasculotoxic effect; the mechanisms of damage/protection vary depending on the target organ; perivascular lesions may occur even when anti-hypertensive doses of losartan are used.
Resumo:
In the present study, we investigated the relationship between polymorphisms in the estrogen-metabolizing genes CYP17, CYP1B1, CYP1A1, and COMT and genomic instability in the peripheral blood lymphocytes of 62 BC patients and 62 controls considering that increased or prolonged exposure to estrogen can damage the DNA molecule and increase the genomic instability process in breast tissue. Our data demonstrated increased genomic instability in BC patients and that individuals with higher frequencies of MN exhibited higher risk to BC when belonging Val/Met genotype of the COMT gene. We also observed that CYP17 and CYP1A1 polymorphisms can modify the risk to BC depending on the menopause status. We can conclude that the genetic background in estrogen metabolism pathway can modulate chromosome damage in healthy controls and patients and thereby influence the risk to BC. These findings suggest the importance to ally biomarkers of susceptibility and effects to estimate risk groups.
Resumo:
This study describes the effects of different intensities of UVB radiation on growth and morphology of early development stages of Iridaea cordata in germlings, young gametophytes originated in the laboratory and young fronds collected in the Magellan Strait, Chile. The experiments were carried out during four weeks in controlled conditions of temperature and photoperiod and the results were compared with a control treatment (without UVB). All UVB irradiation treatments caused bleaching and decrease in growth rates of germlings. Additionally, initial upright fronds were not observed in any of the UVB treatments, where as those cultivated in UVB absence developed erect ones in the second week of culture. The young gametophytes exhibited morphological alteration (small number and size of basal ramifications, curling of tips, bleaching and necrosis) and decrease in growth when exposed to UVB radiation. Young fronds collected from the field showed mainly morphological alterations (curling of frond). Morphological alterations in young gametophytes and young fronds of I. cordata could be interpreted as a defense against UVB by reducing the area exposed to radiation. However, high level of UVB radiation can produce irreparable damage, such as necrosis, observed in young gametophytes originated in the laboratory. Finally, the UVB effects on early developmental stages of I. cordata depend on the UVB irradiance and time of exposition.
Resumo:
Chrysotile is one of the six types of asbestos, and it is the only one that can still be commercialized in many countries. Exposure to other types of asbestos has been associated with serious diseases, such as lung carcinomas and pleural mesotheliomas. The association of chrysotile exposure with disease is controversial. However, in vitro studies show the mutagenic potential of chrysotile, which can induce DNA and cell damage. The present work aimed to analyze alterations in lung small cell carcinoma cultures after 48 h of chrysotile exposure, followed by 2, 4 and 8 days of recovery in fiber-free culture medium. Some alterations, such as aneuploid cell formation, increased number of cells in G2/M phase and cells in multipolar mitosis were observed even after 8 days of recovery. The presence of chrysotile fibers in the cell cultures was detected and cell morphology was observed by laser scanning confocal microscopy. After 4 and 8 days of recovery, only a few chrysotile fragments were present in some cells, and the cellular morphology was similar to that of control cells. Cells transfected with the GFP-tagged alpha-tubulin plasmid were treated with chrysotile for 24 or 48 h and cells in multipolar mitosis were observed by time-lapse microscopy. Fates of these cells were established: retention in metaphase, cell death, progression through M phase generating more than two daughter cells or cell fusion during telophase or cytokinesis. Some of them were related to the formation of aneuploid cells and cells with abnormal number of centrosomes.
Resumo:
Background: Reactivation of p53 by either gene transfer or pharmacologic approaches may compensate for loss of p19Arf or excess mdm2 expression, common events in melanoma and glioma. In our previous work, we constructed the pCLPG retroviral vector where transgene expression is controlled by p53 through a p53-responsive promoter. The use of this vector to introduce p19Arf into tumor cells that harbor p53wt should yield viral expression of p19Arf which, in turn, would activate the endogenous p53 and result in enhanced vector expression and tumor suppression. Since nutlin-3 can activate p53 by blocking its interaction with mdm2, we explored the possibility that the combination of p19Arf gene transfer and nutlin-3 drug treatment may provide an additive benefit in stimulating p53 function. Methods: B16 (mouse melanoma) and C6 (rat glioma) cell lines, which harbor p53wt, were transduced with pCLPGp19 and these were additionally treated with nutlin-3 or the DNA damaging agent, doxorubicin. Viral expression was confirmed by Western, Northern and immunofluorescence assays. p53 function was assessed by reporter gene activity provided by a p53-responsive construct. Alterations in proliferation and viability were measured by colony formation, growth curve, cell cycle and MTT assays. In an animal model, B16 cells were treated with the pCLPGp19 virus and/or drugs before subcutaneous injection in C57BL/6 mice, observation of tumor progression and histopathologic analyses. Results: Here we show that the functional activation of endogenous p53wt in B16 was particularly challenging, but accomplished when combined gene transfer and drug treatments were applied, resulting in increased transactivation by p53, marked cell cycle alteration and reduced viability in culture. In an animal model, B16 cells treated with both p19Arf and nutlin-3 yielded increased necrosis and decreased BrdU marking. In comparison, C6 cells were quite susceptible to either treatment, yet p53 was further activated by the combination of p19Arf and nutlin-3. Conclusions: To the best of our knowledge, this is the first study to apply both p19Arf and nutlin-3 for the stimulation of p53 activity. These results support the notion that a p53 responsive vector may prove to be an interesting gene transfer tool, especially when combined with p53- activating agents, for the treatment of tumors that retain wild-type p53.
Resumo:
Solar radiation sustains and affects all life forms on Earth. In recent years, the increase in environmental levels of solar-UV radiation due to depletion of the stratospheric ozone layer, as a result of anthropogenic emission of destructive chemicals, has highlighted serious issues of social concern. This becomes still more dramatic in tropical and subtropical regions, where the intensity of solar radiation is higher. To better understand the impact of the harmful effects of solar-UV radiation on the DNA molecule, we developed a reliable biological monitoring system based on the exposure of plasmid DNA to artificial UV lamps and sunlight. The determination and quanti. cation of different types of UV photoproducts were performed through the use of specific DNA repair enzymes and antibodies. As expected, a significant number of CPDs and 6-4PPs was observed when the DNA-dosimeter system was exposed to increasing doses of UVB radiation. Moreover, CPDs could also be clearly detected in plasmid DNA when this system was exposed to either UVA or directly to sunlight. Interestingly, although less abundant, 6-4PPs and oxidative DNA damage were also generated after exposure to both UVA and sunlight. These results confirm the genotoxic potential of sunlight, reveal that UVA may also produce CPDs and 6-4PPs directly in naked DNA and demonstrate the applicability of a DNA-dosimeter system for monitoring the biological effects of solar-UV radiation.
Resumo:
During rat hepatocarcinogenesis preneoplastic lesions (PNL) emerge which may persist (pPNL) and be sites of progress to cancer or suffer remodeling (rPNL) tending to disappear. Cellular and molecular mechanisms involved in both phenotypes are not sufficiently elucidated. pPNL and rPNL cellular proliferation and apoptosis were evaluated in rats submitted to the resistant hepatocyte (RH) model, and an adjusted growth index (AGI) was established. p53, Bcl-2, and NF-kappa B p65 subunit expression was evaluated by immunohistochemistry in pPNL and rPNL. p65 expression and NF-kappa B activation was evaluated by Western blot assays in whole livers. A lower number of BrdU-stained hepatocyte nuclei/mm(2) and higher number of apoptotic bodies (AB) per mm(2) were observed in remodeling compared to pPNL. Cytoplasmic p53 accumulation is related to increased hepatocarcinoma malignancy. We observed that 71.3% pPNL and 25.4% rPNL (P < 0.05) presented p53 staining in the cytoplasm. Similarly, 67.7% pPNL and 23.1 % rPNL (P < 0.05) presented increased Bcl-2 staining. Thirty-two percent pPNL and 15.6% rPNL (P < 0.05) presented p65 staining. Compared to normal rats, increase (P < 0.05) of hepatic p65 expression and NF-kappa B activation in rats submitted to the RH model was observed. in agreement to previous studies hepatic pPNL and rPNL differ regarding cell proliferation and apoptosis. Moreover, persistence and remodeling involve differences in p53, Bcl-2, and NF-kappa B pathways. These data point to molecular pathways that may direct preneoplastic lesions to spontaneously regress or to progress to cancer.
Resumo:
Chemopreventive activities of the dietary isoprenoids beta-ionone (beta I) and geraniol (GOH) were evaluated during the promotion phase of hepatocarcinogenesis. Over 5 consecutive weeks, rats received daily 16 mg/100 g body weight (b.w.) of beta I (beta I group), 25 mg/100 g b.w. of GOH (GOH group), or only corn oil (CO group, controls). Compared to the CO group, the following was observed: only the beta I group showed a decrease in the mean number of visible hepatocyte nodules (P<.05); beta I and GOH groups had reduced mean number of persistent preneoplastic lesions (pPNLs) (P<.05), but no differences regarding number of remodeling PNL (rPNLs) were observed; only the beta I group exhibited smaller rPNL size and percentage of liver sections occupied by pPNLs (P<.05), whereas the GOH group displayed a smaller percentage of liver sections occupied by rPNLs (P<.05); a trend was observed in the beta I group, which showed reduced cell proliferation of pPNLs (P<.10), and the GOH group had increased apoptosis in pPNLs and rPNLs (P<.05); only the beta I group displayed reduced total plasma cholesterol concentrations (P<.05) and increased hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMGCoA) reductase mRNA levels (P<.05): only the GOH group had lower hepatic membrane RhoA protein levels (P<.05); both the beta I- and GOH-treated groups had higher hepatic concentrations of beta I and GOH, respectively (P<.05). Given these data, beta I and GOH show promising chemopreventive effects during promotion of hepatocarcinogenesis by acting through distinct mechanism of actions: beta I may inhibit cell proliferation and modulate HMGCoA reductase, and GOH can induce apoptosis and inhibit RhoA activation. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
BACKGROUND: There has been growing interest in sodium copper chlorophyllin (Cu-Chl) as a food colourant and supplement owing to its beneficial biological activities. Studies have revealed that this green pigment inhibits experimental carcinogenesis and interacts with proteins and genotoxic agents. Health-related activities have also been associated with the prevention of lipid peroxidation. However, intestinal absorption of this pigment has been considered insignificant, raising questions of whether eventual biological properties are related to pre- or post-absorptive actions. In this study, intestinal absorption of Cu-Chl and its appearance in serum and organs were estimated by high-performance liquid chromatography analysis in rat feeding experiments. The effect of ingested Cu-Chl on lipid peroxidation was analysed by measuring thiobarbituric acid-reactive substances and antioxidant enzyme activities in hepatic and brain tissues of oxidative stress-induced rats. RESULTS: The two main components of commercial Cu-Chl, namely Cu-chlorin e(6) and Cu-chlorin e(4), showed different digestive behaviours, and only Cu-chlorin e4 was found in serum, liver and kidneys. Antioxidant activity in vivo could be observed in brain and seemed to be related to in situ protection but not to antioxidant enzyme modulation. CONCLUSION: As at least one of the major components of Cu-Chl is effectively absorbed, further pharmacolkinetic studies are encouraged to access absorption rates and the role of ingested copper chlorophyllins in mammals. (C) 2009 Society of Chemical Industry
Resumo:
The trace element selenium (Se), once known only for its potential toxicity, is now a well-established essential micronutrient for mammals. The organoselenium compound diphenyl diselenide (DPDS) has shown interesting antioxidant and neuroprotective activities. On the other hand, this compound has also presented pro-oxidant and mutagenic effects. The compound 3`3-ditrifluoromethyldiphenyl diselenide (DFDD), a structural analog of diphenyl diselenide, has proven antipsychotic activity in mice. Nevertheless, as opposed to DPDS, little is known on the biological and toxicological properties of DFDD. In the present study, we report the genotoxic effects of the organoselenium compound DFDD on Salmonella typhimurium, Saccharomyces cerevisiae and Chinese hamster lung fibroblasts (V79 cells). DFDD protective effects against hydrogen peroxide (H(2)O(2))-induced DNA damage in vitro are demonstrated. DFDD did not cause mutagenic effects on S. typhimurium or S. cerevisiae strains; however, it induced DNA damage in V79 cells at doses higher than 25 mu M, as detected by comet assay. DFDD protected S. typhimurium and S. cerevisiae against H(2)O(2)-induced mutagenicity, and, at doses lower than 12.5 mu M, prevented H(2)O(2)-induced genotoxicity in V79 cells. The in vitro assays demonstrated that DFDD mimics catalase activity better than DPDS, but neither presents Superoxide dismutase action. The products of the reactions of DFDD or DPDS with H(2)O(2) were different. as determined by electrospray mass spectrometry analysis (ESI-MS). These results suggest that DFDD is not mutagenic for bacteria or yeast; however, it may induce weak genotoxic effects on mammalian cells. In addition, DFDD has a protective effect against H(2)O(2)-induced damage probably by mimicking catalase activity, and the distinct products of the reaction DFDD with H(2)O(2) probably have a fundamental role in the protective effects of DFDD. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The dibenzylbutyrolactone lignan (-)-hinokinin (HK) was obtained by partial synthesis from (-)-cubebin, isolated from the dry seeds of the pepper, Piper cubeba. In view of the trypanocidal activity of HK and its potential as a lead compound for drug development, evaluation of its possible genotoxic activity is required. We have tested HK for possible genotoxicity and evaluated the compound`s effect on the activity of the clastogens doxorubicin (DXR) and methyl methanesulfonate (MMS) in the micronucleus (MN) assay with Chinese hamster lung fibroblast V79 cells. HK alone did not induce MN, at concentrations up to 128 mu M. In combined treatments, HK reduced the frequency of MN induced by MMS. With respect to DXR, HK exerted a protective effect at lower concentrations, but at higher concentrations it potentiated DXR clastogenicity. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Baccharis dracunculifolia (Asteraceae), the main botanical source of green propolis, is a shrub of the Brazilian `cerrado`. In folk medicine it is used as an anti-inflammatory agent, mainly for the treatment of gastrointestinal diseases. The aim of the present study was to evaluate the genotoxic and antigenotoxic effects of B. dracunculifolia ethyl acetate extract (Bd-EAE) on Chinese hamster lung fibroblasts (V79 cells) by the comet assay. Methyl methanesulfonate (MMS; 200 mu M) was used as an inducer of DNA damage. Genotoxicity was evaluated using four different concentrations of Bd-EAE: 12.5, 25.0, 50.0 and 100.0 mu g ml(-1). Antigenotoxicity was assessed before, simultaneously, and after treatment with the mutagen. The results showed a significant increase in the frequency of DNA damage in cultures treated with 50.0 and 100.0 mu g ml(-1) Bd-EAE. Regarding its antigenotoxic potential, Bd-EAE reduced the frequency of DNA damage induced by MMS. However, this chemopreventive activity depended on the concentrations and treatment regimens used. The antioxidant activity of phenolic components present in Bd-EAE may contribute to reduce the alkylation damage induced by MMS. In conclusion, our findings confirmed the chemopreventive activity of Bd-EAE and showed that this effect occurs under different mechanism. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
The flavonoid quercetin and its derivative rutin were investigated for genotoxicity/antigenotoxicity activity in human hepatoma HepG2 cells using the comet assay. The extract cytotoxicity was evaluated using the trypan blue exclusion dye method with quercetin and rutin concentrations ranging from 0.1 to 200.0 mu g/mL of culture medium. Three minor non-cytotoxic concentrations were chosen to evaluate the genotoxicity and antigenotoxicity of the flavonoids (0.1, 1.0 and 5.0 mu g/mL) through comet assay. The cultures were treated with three different concentrations of rutin or quercetin (genotoxicity) or their association with Aflatoxin B1 (AFB1), methyl methanesulfonate (MMS) or doxorubicin (DXR) (antigenotoxicity test) in three protocols: pretreatment, simultaneous treatment and post-treatment. The cell cultures were also treated with 1% DMSO (control group), AFB1, MMS and DXR (positive-control). Statistical analyses were performed using ANOVA and Dunnett`s test (p <= 0.05). Quercetin at concentrations higher than 10.0 mu g/mL or rutin higher than 50.0 mu g/mL exhibited a cytotoxic effect on the cells, showing that quercetin is more cytotoxic than rutin. Furthermore, neither compound was able to induce genotoxicity in the concentrations evaluated. On the other hand, both flavonoids reduced DNA damage induced by AFB1, MMS and DXR in all treatment protocols. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
The present study evaluates a possible protective effect of fish oil against oxidative damage promoted by methylmercury (MeHg) in sub-chronically exposed rats. Reduced glutathione peroxidase and catalase enzyme activity and reduced glutathione levels were observed in MeHg-exposed animals compared to controls. Methylmercury exposure was also associated with DNA damage. Administration of fish oil to the methylmercury-exposed animals did not ameliorate enzyme activity or glutathione levels. On the other hand, a significant DNA protective effect (about 30%) was observed with fish oil treatment. There were no differences in the total mercury concentration in rat liver, kidney, heart or brain after MeHg administration with or without fish oil co-administration. Histopathological analyses showed a significant leukocyte infiltration in rat tissues after MeHg exposure, but this effect was significantly reduced after co-administration of fish oil. Taken together, our findings demonstrate oxidative damage even after low-level MeHg exposure and the protective effect of fish oil. This protection seems not to be related to antioxidant defenses or mercury re-distribution in rat tissues. It is probably due to the anti-inflammatory effects of fish oil. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Solar radiation is one of the major factors responsible for the control of fungus populations in the environment. Inactivation by UVA and UVB radiation is especially important for the control of fungi that disperse infective units through the air, including fungi such as Cryptococcus spp. that infect their vertebrate hosts by inhalation. Cryptococcus neoformans produces melanin in the presence of certain exogenous substrates such as l-3,4 dihydroxyphenylalanine and melanization may protect the fungus against biotic and abiotic environmental factors. In the present study, we investigated the effect of exposure to an UVB irradiance of 1000 mW m(-2) (biologically effective weighted irradiance) on the survival of melanized and nonmelanized cells of four strains of C. neoformans and four strains of C. laurentii. The relative survival (survival of cells exposed to radiation in relation to cells not exposed) of cells grown 2, 4, 6 or 8 days on medium with or without L-dopa was determined after exposure to UVB doses of 1.8 and 3.6 kJ m(-2). Both the irradiance spectrum and the intensities of those doses are environmentally realistic, and, in fact, occur routinely during summer months in temperate regions. Differences in tolerance to UVB radiation were observed between the C. neoformans and C. laurentii strains. The C. neoformans strains were more susceptible to UVB radiation than the C. laurentii strains. In C. neoformans, differences in tolerance to radiation were observed during development of both melanized and nonmelanized cells. For most treatments (strain, time of growth and UVB dose), there were virtually no differences in tolerances between melanized and nonmelanized cells, but when differences occurred they were smaller than those previously observed with UVC. In tests with two strains of C. laurentii, there was no difference in tolerance to UVB radiation between melanized and nonmelanized cells during 8 days of culture; and in tests with four strains for less culture time (4 days) there were no significant differences in tolerance between melanized and nonmelanized cells of any strain of this species.