137 resultados para Quartz crystals


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work describes the infrared spectroscopy characterization and the charge compensation dynamics in supramolecular film FeTPPZFeCN derived from tetra-2-pyridyl-1,4-pyrazine (TPPZ) with hexacyanoferrate, as well as the hybrid film formed by FeTPPZFeCN and polypyrrole (PPy). For supramolecular film, it was found that anion flux is greater in a K+ containing solution than in Li+ solution, which seems to be due to the larger crystalline ionic radius of K+. The electroneutralization process is discussed in terms of electrostatic interactions between cations and metallic centers in the hosting matrix. The nature of the charge compensation process differs from others modified electrodes based on Prussian blue films, where only cations such as K+ participate in the electroneutralization process. In the case of FeTPPZFeCN/PPy hybrid film, the magnitude of the anions’s flux is also dependent on the identity of the anion of the supporting electrolyte.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to evaluate the degree of conversion by Knoop microhardness (KHN) and FT-Raman spectroscopy (FTIR) of one nanofilled (Filtek Supreme-3M-ESPE [FS]) and one microhybrid composite (Charisma-Heraeus-Kulzer [CH]), each with different opacities, namely enamel, dentin, and translucent, which were photo-activated by a quartz-tungsten-halogen lamp (QTH) and a light-emitting diode (LED). Resin was bulk inserted into a disc-shaped mold that was 2.0 mm thick and 4 mm in diameter, obtaining 10 samples per group. KHN and FTIR values were analyzed by two-way ANOVA and Tukey's tests (α = 0.05). Nanofilled resin activated by a LED presented higher microhardness values than samples activated by a QTH for dentin opacity (p < 0.05). The microhybrid resin showed no differences in KHN or FTIR values with different activation sources or opacity. The nanofilled dentin and enamel resins showed lower FTIR values than the translucent resin. The KHN values of the translucent resins were not influenced by the light source.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of annealing on the mechanical properties of high-silicon cast iron for three alloys with distinct chromium levels was investigated. Each alloy was melted either with or without the addition of Ti and Mg. These changes in the chemical composition and heat treatment aimed to improve the material's mechanical properties by inhibiting the formation of large columnar crystals, netlike laminae, precipitation of coarse packs of graphite, changing the length and morphology of graphite, and rounding the extremities of the flakes to minimize the stress concentration. For alloys with 0.07 wt.% Cr, the annealing reduced the impact resistance and tensile strength due to an enhanced precipitation of refined carbides and the formation of interdendritic complex nets. Annealing the alloys containing Ti and Mg led to a decrease in the mechanical strength and an increase in the toughness. Alloys containing approximately 2 wt.% Cr achieved better mechanical properties as compared to the original alloy. However, with the addition of Ti and Mg to alloys containing 2% Cr, the chromium carbide formation was inhibited, impairing the mechanical properties. In the third alloy, with 3.5 wt.% of Cr additions, the mechanical strength improved. The annealing promoted a decrease in both hardness and amount of iron and silicon complex carbides. However, it led to a chromium carbide formation, which influenced the mechanical characteristics of the matrix of the studied material.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Single-point diamond turning of monocrystalline semiconductors is an important field of research within brittle materials machining. Monocrystalline silicon samples with a (100) orientation have been diamond turned under different cutting conditions (feed rate and depth of cut). Micro-Raman spectroscopy and atomic force microscopy have been used to assess structural alterations and surface finish of the samples diamond turned under ductile and brittle modes. It was found that silicon undergoes a phase transformation when machined in the ductile mode. This phase transformation is evidenced by the creation of an amorphous surface layer after machining which has been probed by Raman scattering. Compressive residual stresses are estimated for the machined surface and it is observed that they decrease with an increase in the feed rate and depth of cut. This behaviour has been attributed to the formation of subsurface cracks when the feed rate is higher than or equal to 2.5 mu m/rev. The surface roughness was observed to vary with the feed rate and the depth of cut. An increase in the surface roughness was influenced by microcrack formation when the feed rate reached 5.0 mu m/rev. Furthermore, a high-pressure phase transformation induced by the tool/material interaction and responsible for the ductile response of this typical brittle material is discussed based upon the presented Raman spectra. The application of this machining technology finds use for a wide range of high quality components, for example the creation of a micrometre-range channel for microfluidic devices as well as microlenses used in the infrared spectrum range.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Currently, the acoustic and nanoindentation techniques are two of the most used techniques for material elastic modulus measurement. In this article fundamental principles and limitations of both techniques are shown and discussed. Last advances in nanoindentation technique are also reviewed. An experimental study in ceramic, metallic, composite and single crystals was also done. Results shown that ultrasonic technique is capable to provide results in agreement with those reported in literature. However, ultrasonic technique does not allow measuring the elastic modulus of some small samples and single crystals. On the other hand, the nanoindentation technique estimates the elastic modulus values in reasonable agreement with those measured by acoustic methods, particularly in amorphous materials, while in some policristaline materials some deviation from expected values was obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quasiharmonic approximation (QHA), in its simplest form also called the statically constrained (SC) QHA, has been shown to be a straightforward method to compute thermoelastic properties of crystals. Recently we showed that for noncubic solids SC-QHA calculations develop deviatoric thermal stresses at high temperatures. Relaxation of these stresses leads to a series of corrections to the free energy that may be taken to any desired order, up to self-consistency. Here we show how to correct the elastic constants obtained using the SC-QHA. We exemplify the procedure by correcting to first order the elastic constants of MgSiO(3) perovskite and MgSiO(3) postperovskite, the major phases of the Earth's lower mantle. We show that this first-order correction is quite satisfactory for obtaining the aggregated elastic averages of these minerals and their velocities in the lower mantle. This type of correction is also shown to be applicable to experimental measurements of elastic constants in situations where deviatoric stresses can develop, such as in diamond-anvil cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work uses crystal plasticity finite element simulations to elucidate the role of elastoplastic anisotropy in instrumented indentation P-h(s) curve measurements in face-centered Cubic (fcc) crystals. It is shown that although the experimental fluctuations in the loading stage of the P-h(s) curves can be attributed to anisotropy, the variability in the unloading stage of the experiments Is much greater than that resulting from anisotropy alone. Moreover, it is found that the conventional procedure used to evaluate the contact variables ruling the unloading P-h(s) curve introduces all uncertainty that approximates to the more fundamental influence of anisotropy. In view of these results, a robust procedure is proposed that uses contact area measurements in addition to the P-h(s) curves to extract homogenized J(2)-Plasticity-equivalent mechanical properties from single crystals.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite the valuable contributions of robotics and high-throughput approaches to protein crystallization, the role of an experienced crystallographer in the evaluation and rationalization of a crystallization process is still crucial to obtaining crystals suitable for X-ray diffraction measurements. In this work, the difficult task of crystallizing the flavoenzyme l-amino-acid oxidase purified from Bothrops atrox snake venom was overcome by the development of a protocol that first required the identification of a non-amorphous precipitate as a promising crystallization condition followed by the implementation of a methodology that combined crystallization in the presence of oil and seeding techniques. Crystals were obtained and a complete data set was collected to 2.3 A resolution. The crystals belonged to space group P2(1), with unit-cell parameters a = 73.64, b = 123.92, c = 105.08 A, beta = 96.03 degrees. There were four protein subunits in the asymmetric unit, which gave a Matthews coefficient V (M) of 2.12 A3 Da-1, corresponding to 42% solvent content. The structure has been solved by molecular-replacement techniques.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proteins containing PilZ domains are widespread in Gram-negative bacteria and have recently been shown to be involved in the control of biofilm formation, adherence, aggregation, virulence-factor production and motility. Furthermore, some PilZ domains have recently been shown to bind the second messenger bis(3'-> 5') cyclic diGMP. Here, the cloning, expression, purification and crystallization of PilZ(XAC1133), a protein consisting of a single PilZ domain from Xanthomonas axonopodis pv. citri, is reported. The closest PilZ(XAC1133) homologues in Pseudomonas aeruginosa and Neisseria meningitidis control type IV pilus function. Recombinant PilZ(XAC1133) containing selenomethionine was crystallized in space group P6(1). The unit-cell parameters were a = 62.125, b = 62.125, c = 83.543 angstrom. These crystals diffracted to 1.85 angstrom resolution and a MAD data set was collected at a synchrotron source. The calculated Matthews coefficient suggested the presence of two PilZ(XAC1133) molecules in the asymmetric unit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

LipL32 is a major surface protein that is expressed during infection by pathogenic Leptospira. Here, the crystallization of recombinant LipL32(21-272), which corresponds to the mature LipL32 protein minus its N-terminal lipid-anchored cysteine residue, is described. Selenomethionine-labelled LipL32(21-272) crystals diffracted to 2.25 angstrom resolution at a synchrotron source. The space group was P3(1)21 or P3(2)21 and the unit-cell parameters were a = b = 126.7, c = 96.0 angstrom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we investigate the influence of the adsorption of ions on the impedance spectroscopy of an electrolytic cell. We consider that the positive and negative ions present in a dielectric liquid are adsorbed in the electrode surfaces with different adsorption energies. This difference in adsorption energies causes an additional plateaux in the limit of the low-frequency range of the real part of the impedance Z. In the same frequency range, a second minimum in the imaginary part of Z is predicted. The theory is illustrated with measurements of the impedance of an electrolytic solution in the frequency range from 10(-2) Hz to 1 KHz. A comparison between the present model and others from the literature to describe the experimental results is also made.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce a simple mean-field lattice model to describe the behavior of nematic elastomers. This model combines the Maier-Saupe-Zwanzig approach to liquid crystals and an extension to lattice systems of the Warner-Terentjev theory of elasticity, with the addition of quenched random fields. We use standard techniques of statistical mechanics to obtain analytic solutions for the full range of parameters. Among other results, we show the existence of a stress-strain coexistence curve below a freezing temperature, analogous to the P-V diagram of a simple fluid, with the disorder strength playing the role of temperature. Below a critical value of disorder, the tie lines in this diagram resemble the experimental stress-strain plateau and may be interpreted as signatures of the characteristic polydomain-monodomain transition. Also, in the monodomain case, we show that random fields may soften the first-order transition between nematic and isotropic phases, provided the samples are formed in the nematic state.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Metal-organic materials constitute a new field in which to search for ferroelectricity and coupling between electricity and magnetism. We observe a magnetic field-induced change in the electric polarization, Delta P(H), that reaches 50 mu C/m(2) in single crystals of NiCl(2)-4SC(NH(2))(2) (DTN). DTN forms a tetragonal structure that breaks inversion symmetry with the electrically polar thiourea molecules [SC(NH(2))] all tilted in the same direction along the c axis. The field H induces canted antiferromagnetism of the Ni S = 1 spins between 2 and 12 T and our measurements show that the electric polarization increases monotonically in this range, saturating above 12 T. By modeling the microscopic origin of this magnetoelectric effect, we find that the leading contribution to Delta P comes from the change in the crystal electric field, with a smaller contribution from magnetic exchange striction. The finite value of Delta P induced by magnetostriction results from the polar nature of the thiourea molecules bonded to the Ni atoms, and it is amplified by the softness of these organic molecules.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a first-principles systematic study of the electronic structure of SiO(2) including the crystalline polymorphs alpha quartz and beta cristobalite, and different types of disorder leading to the amorphous phase. We start from calculations within density functional theory and proceed to more sophisticated quasiparticle calculations according to the GW scheme. Our results show that different origins of disorder have also different impact on atomic and electronic-density fluctuations, which affect the electronic structure and, in particular, the size of the mobility gap in each case.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spectroscopy of the centrosymmetric magnetic semiconductors EuTe and EuSe reveals spin-induced optical second harmonic generation (SHG) in the band gap vicinity at 2.1-2.4 eV. The magnetic field and temperature dependence demonstrates that the SHG arises from the bulk of the materials due to a novel type of nonlinear optical susceptibility caused by the magnetic dipole contribution combined with spontaneous or induced magnetization. This spin-induced susceptibility opens access to a wide class of centrosymmetric systems by harmonics generation spectroscopy.