72 resultados para Particle tracking detectors
Resumo:
We have studied the magnetic and power absorption properties of a series of magnetic nanoparticles (MNPs) of Fe(3)O(4) with average sizes < d > ranging from 3 to 26 rim. Heating experiments as a function of particle size revealed a strong increase in the specific power absorption (SPA) values for particles with < d > = 25-30 mn. On the other side saturation magnetization M(s) values of these MNPs remain essentially constant for particles with < d > above 10 rim, suggesting that the absorption mechanism is not determined by Ms. The largest SPA value obtained was 130 W/g, corresponding to a bimodal particle distribution with average size values of 17 and 26 nm.
Resumo:
In this work we investigate the dynamical Casimir effect in a nonideal cavity by deriving an effective Hamiltonian. We first compute a general expression for the average number of particle creation, applicable for any law of motion of the cavity boundary, under the only restriction of small velocities. We also compute a general expression for the linear entropy of an arbitrary state prepared in a selected mode, also applicable for any law of motion of a slow moving boundary. As an application of our results we have analyzed both the average number of particle creation and linear entropy within a particular oscillatory motion of the cavity boundary. On the basis of these expressions we develop a comprehensive analysis of the resonances in the number of particle creation in the nonideal dynamical Casimir effect. We also demonstrate the occurrence of resonances in the loss of purity of the initial state and estimate the decoherence times associated with these resonances. Since our results were obtained in the framework of the perturbation theory, they are restricted, under resonant conditions, to a short-time approximation. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The surface detector array of the Pierre Auger Observatory consists of 1600 water-Cherenkov detectors, for the study of extensive air showers (EAS) generated by ultra-high-energy cosmic rays. We describe the trigger hierarchy, from the identification of candidate showers at the level of a single detector, amongst a large background (mainly random single cosmic ray muons), up to the selection of real events and the rejection of random coincidences. Such trigger makes the surface detector array fully efficient for the detection of EAS with energy above 3 x 10(18) eV, for all zenith angles between 0 degrees and 60 degrees, independently of the position of the impact point and of the mass of the primary particle. In these range of energies and angles, the exposure of the surface array can be determined purely on the basis of the geometrical acceptance. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The Lieb-Oxford bound is a constraint upon approximate exchange-correlation functionals. We explore a nonempirical tightening of that bound in both universal and electron number-dependent form. The test functional is PBE. Regarding both atomization energies (slightly worsened) and bond lengths (slightly improved), we find the PBE functional to be remarkably insensitive to the value of the Lieb-Oxford bound. This both rationalizes the use of the original Lieb-Oxford constant in PBE and suggests that enhancement factors more sensitive to sharpened constraints await discovery.
Resumo:
The reconstruction of Extensive Air Showers (EAS) observed by particle detectors at the ground is based on the characteristics of observables like the lateral particle density and the arrival times. The lateral densities, inferred for different EAS components from detector data, are usually parameterised by applying various lateral distribution functions (LDFs). The LDFs are used in turn for evaluating quantities like the total number of particles or the density at particular radial distances. Typical expressions for LDFs anticipate azimuthal symmetry of the density around the shower axis. The deviations of the lateral particle density from this assumption arising from various reasons are smoothed out in the case of compact arrays like KASCADE, but not in the case of arrays like Grande, which only sample a smaller part of the azimuthal variation. KASCADE-Grande, an extension of the former KASCADE experiment, is a multi-component Extensive Air Shower (EAS) experiment located at the Karlsruhe Institute of Technology (Campus North), Germany. The lateral distributions of charged particles are deduced from the basic information provided by the Grande scintillators - the energy deposits - first in the observation plane, then in the intrinsic shower plane. In all steps azimuthal dependences should be taken into account. As the energy deposit in the scintillators is dependent on the angles of incidence of the particles, azimuthal dependences are already involved in the first step: the conversion from the energy deposits to the charged particle density. This is done by using the Lateral Energy Correction Function (LECF) that evaluates the mean energy deposited by a charged particle taking into account the contribution of other particles (e.g. photons) to the energy deposit. By using a very fast procedure for the evaluation of the energy deposited by various particles we prepared realistic LECFs depending on the angle of incidence of the shower and on the radial and azimuthal coordinates of the location of the detector. Mapping the lateral density from the observation plane onto the intrinsic shower plane does not remove the azimuthal dependences arising from geometric and attenuation effects, in particular for inclined showers. Realistic procedures for applying correction factors are developed. Specific examples of the bias due to neglecting the azimuthal asymmetries in the conversion from the energy deposit in the Grande detectors to the lateral density of charged particles in the intrinsic shower plane are given. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The properties of galactic cosmic rays are investigated with the KASCADE-Grande experiment in the energy range between 10(14) and 10(18) eV. Recent results are discussed. They concern mainly the all-particle energy spectrum and the elemental composition of cosmic rays. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Since data-taking began in January 2004, the Pierre Auger Observatory has been recording the count rates of low energy secondary cosmic ray particles for the self-calibration of the ground detectors of its surface detector array. After correcting for atmospheric effects, modulations of galactic cosmic rays due to solar activity and transient events are observed. Temporal variations related with the activity of the heliosphere can be determined with high accuracy due to the high total count rates. In this study, the available data are presented together with an analysis focused on the observation of Forbush decreases, where a strong correlation with neutron monitor data is found.
Resumo:
In this work we study, under the Stratonovich definition, the problem of the damped oscillatory massive particle subject to a heterogeneous Poisson noise characterized by a rate of events, lambda(t), and a magnitude, Phi, following an exponential distribution. We tackle the problem by performing exact time averages over the noise in a similar way to previous works analysing the problem of the Brownian particle. From this procedure we obtain the long-term equilibrium distributions of position and velocity as well as analytical asymptotic expressions for the injection and dissipation of energy terms. Considerations on the emergence of stochastic resonance in this type of system are also set forth.
Resumo:
This paper proposes a method to locate and track people by combining evidence from multiple cameras using the homography constraint. The proposed method use foreground pixels from simple background subtraction to compute evidence of the location of people on a reference ground plane. The algorithm computes the amount of support that basically corresponds to the ""foreground mass"" above each pixel. Therefore, pixels that correspond to ground points have more support. The support is normalized to compensate for perspective effects and accumulated on the reference plane for all camera views. The detection of people on the reference plane becomes a search for regions of local maxima in the accumulator. Many false positives are filtered by checking the visibility consistency of the detected candidates against all camera views. The remaining candidates are tracked using Kalman filters and appearance models. Experimental results using challenging data from PETS`06 show good performance of the method in the presence of severe occlusion. Ground truth data also confirms the robustness of the method. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We present a variable time step, fully adaptive in space, hybrid method for the accurate simulation of incompressible two-phase flows in the presence of surface tension in two dimensions. The method is based on the hybrid level set/front-tracking approach proposed in [H. D. Ceniceros and A. M. Roma, J. Comput. Phys., 205, 391400, 2005]. Geometric, interfacial quantities are computed from front-tracking via the immersed-boundary setting while the signed distance (level set) function, which is evaluated fast and to machine precision, is used as a fluid indicator. The surface tension force is obtained by employing the mixed Eulerian/Lagrangian representation introduced in [S. Shin, S. I. Abdel-Khalik, V. Daru and D. Juric, J. Comput. Phys., 203, 493-516, 2005] whose success for greatly reducing parasitic currents has been demonstrated. The use of our accurate fluid indicator together with effective Lagrangian marker control enhance this parasitic current reduction by several orders of magnitude. To resolve accurately and efficiently sharp gradients and salient flow features we employ dynamic, adaptive mesh refinements. This spatial adaption is used in concert with a dynamic control of the distribution of the Lagrangian nodes along the fluid interface and a variable time step, linearly implicit time integration scheme. We present numerical examples designed to test the capabilities and performance of the proposed approach as well as three applications: the long-time evolution of a fluid interface undergoing Rayleigh-Taylor instability, an example of bubble ascending dynamics, and a drop impacting on a free interface whose dynamics we compare with both existing numerical and experimental data.
Resumo:
The present paper describes the utilization of nickel hydroxide modified electrodes toward the catalytic oxidation of carbohydrates (glucose, fructose, lactose and sucrose) and their utilization as electrochemical sensor. The modified electrodes were employed as a detector in flow injection analysis for individual carbohydrate detection, and to an ionic column chromatography system for multi-analyte samples aiming a prior separation step. Kinetic studies were performed on a rotating disk electrode (RDE) in order to determine both the heterogeneous rate constant and number of electrons transferred for each carbohydrate. Many advantages were found for the proposed system including fast and easy handling of the electrode modification, low cost procedure, a wide range of linearity (0.5-50 ppm), low detection limits (ppb level) and high sensitivities. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper reports on the effect of sonication on SAz-1 and SWy-1 montmorillonite suspensions. Changes in the size of the particles of these materials and modifications of their properties have been investigated. The variation of the particle size has been analyzed by DLS (dynamic light scattering). In all cases the clay particles show a bimodal distribution. Sonication resulted in a decrease of the larger modal diameter, as well as a reduction of its volume percentage. Simultaneously, the proportion of the smallest particles increases. After 60 min of sonication, SAz-1 presented a very broad particle size distribution with a modal diameter of 283 nm. On the other hand, the SWy-1 sonicated for 60 min presents a bimodal distribution of particles at 140 and 454 nm. Changes in the properties of the clay suspensions due to sonication were evaluated spectroscopically from dye-clay interactions, using Methylene Blue. The acidic sites present in the interlamellar region, which are responsible for dye protonation, disappeared after sonication of the clay. The changes in the size of the scattering particles and the lack of acidic sites after sonication suggest that sonication induces delamination of the clay particles. (c) 2008 Elsevier Inc. All rights reserved.