140 resultados para Nonlinear Wave Equation
Resumo:
Using the solutions of the gap equations of the magnetic-color-flavor-locked (MCFL) phase of paired quark matter in a magnetic field, and taking into consideration the separation between the longitudinal and transverse pressures due to the field-induced breaking of the spatial rotational symmetry, the equation of state of the MCFL phase is self-consistently determined. This result is then used to investigate the possibility of absolute stability, which turns out to require a field-dependent ""bag constant"" to hold. That is, only if the bag constant varies with the magnetic field, there exists a window in the magnetic field vs bag constant plane for absolute stability of strange matter. Implications for stellar models of magnetized (self-bound) strange stars and hybrid (MCFL core) stars are calculated and discussed.
Resumo:
A class of semilinear evolution equations of the second order in time of the form u(tt)+Au+mu Au(t)+Au(tt) = f(u) is considered, where -A is the Dirichlet Laplacian, 92 is a smooth bounded domain in R(N) and f is an element of C(1) (R, R). A local well posedness result is proved in the Banach spaces W(0)(1,p)(Omega)xW(0)(1,P)(Omega) when f satisfies appropriate critical growth conditions. In the Hilbert setting, if f satisfies all additional dissipativeness condition, the nonlinear Semigroup of global solutions is shown to possess a gradient-like attractor. Existence and regularity of the global attractor are also investigated following the unified semigroup approach, bootstrapping and the interpolation-extrapolation techniques.
Resumo:
This paper studies semistability of the recursive Kalman filter in the context of linear time-varying (LTV), possibly nondetectable systems with incorrect noise information. Semistability is a key property, as it ensures that the actual estimation error does not diverge exponentially. We explore structural properties of the filter to obtain a necessary and sufficient condition for the filter to be semistable. The condition does not involve limiting gains nor the solution of Riccati equations, as they can be difficult to obtain numerically and may not exist. We also compare semistability with the notions of stability and stability w.r.t. the initial error covariance, and we show that semistability in a sense makes no distinction between persistent and nonpersistent incorrect noise models, as opposed to stability. In the linear time invariant scenario we obtain algebraic, easy to test conditions for semistability and stability, which complement results available in the context of detectable systems. Illustrative examples are included.
Resumo:
This paper studies a nonlinear, discrete-time matrix system arising in the stability analysis of Kalman filters. These systems present an internal coupling between the state components that gives rise to complex dynamic behavior. The problem of partial stability, which requires that a specific component of the state of the system converge exponentially, is studied and solved. The convergent state component is strongly linked with the behavior of Kalman filters, since it can be used to provide bounds for the error covariance matrix under uncertainties in the noise measurements. We exploit the special features of the system-mainly the connections with linear systems-to obtain an algebraic test for partial stability. Finally, motivated by applications in which polynomial divergence of the estimates is acceptable, we study and solve a partial semistability problem.
Resumo:
Using a quasitoroidal set of coordinates with coaxial circular magnetic surfaces, Vlasov equation is solved for collisionless plasmas in drift approach and a perpendicular dielectric tensor is found for large aspect ratio tokamaks in a low frequency band. Taking into account plasma rotation and charge separation parallel electric field, it is found that an ion geodesic effect deform Alfveacuten wave continuum producing continuum minimum at the rational magnetic surfaces, which depends on the plasma rotation and poloidal mode numbers. In kinetic approach, the ion thermal motion defines the geodesic effect but the mode frequency also depends on electron temperature. A geodesic ion Alfveacuten mode predicted below the continuum minimum has a small Landau damping in plasmas with Maxwell distribution but the plasma rotation may drive instability.
Resumo:
X-ray multiple diffraction experiments with synchrotron radiation were carried out on pure and doped nonlinear optical crystals: NH(4)H(2)PO(4) and KH(2)PO(4) doped with Ni and Mn, respectively. Variations in the intensity profiles were observed from pure to doped samples, and these variations correlated with shifts in the structure factor phases, also known as triplet phases. This result demonstrates the potential of X-ray phase measurements to study doping in this type of single crystal. Different methodologies for probing structural changes were developed. Dynamical diffraction simulations and curve fitting procedures were also necessary for accurate phase determination. Structural changes causing the observed phase shifts are discussed.
Resumo:
Using a quasitoroidal set of coordinates with coaxial circular magnetic surfaces, the Vlasov equation is solved for collisionless plasmas, and the dielectric tensor is found for large aspect ratio tokamaks in a low frequency band. Taking into account q-profile and charge separation parallel electric field, it is found that the Alfven wave continuum is deformed by ion geodesic effects producing continuum minimum at the rational magnetic surfaces. Low frequency geodesic ion induced Alfven waves are found below the continuum minimum where collisionless damping has a gap for Maxwell distribution. In kinetic approach, the ion thermal motion defines the geodesic effect but the mode frequency is strongly corrected due to parallel motion of electrons.
Resumo:
Using a quasi-toroidal set of coordinates in plasmas with coaxial circular magnetic surfaces, the Vlasov equation is solved, and dielectric tensor is found for large aspect ratio tokamaks in a low frequency band. Taking into account the q-profile and drift effects, Alfven wave continuum deformation by geodesic effects is analyzed. It is shown that the Alfven continuum has a minimum defined by the ion thermal velocity at the rational magnetic surfaces q(s)=-M/N, where M and N are the poloidal and toroidal mode numbers, respectively, and the parallel wave number is zero. Low frequency global Alfven waves are found below the continuum minimum. In hot ion plasmas, the geodesic term changes sign, provoking some deformation of Alfven velocity by a factor (1+q(2))(-1/2), and the continuum minimum disappears. (C) 2008 American Institute of Physics.
Resumo:
We consider a binary Bose-Einstein condensate (BEC) described by a system of two-dimensional (2D) Gross-Pitaevskii equations with the harmonic-oscillator trapping potential. The intraspecies interactions are attractive, while the interaction between the species may have either sign. The same model applies to the copropagation of bimodal beams in photonic-crystal fibers. We consider a family of trapped hidden-vorticity (HV) modes in the form of bound states of two components with opposite vorticities S(1,2) = +/- 1, the total angular momentum being zero. A challenging problem is the stability of the HV modes. By means of a linear-stability analysis and direct simulations, stability domains are identified in a relevant parameter plane. In direct simulations, stable HV modes feature robustness against large perturbations, while unstable ones split into fragments whose number is identical to the azimuthal index of the fastest growing perturbation eigenmode. Conditions allowing for the creation of the HV modes in the experiment are discussed too. For comparison, a similar but simpler problem is studied in an analytical form, viz., the modulational instability of an HV state in a one-dimensional (1D) system with periodic boundary conditions (this system models a counterflow in a binary BEC mixture loaded into a toroidal trap or a bimodal optical beam coupled into a cylindrical shell). We demonstrate that the stabilization of the 1D HV modes is impossible, which stresses the significance of the stabilization of the HV modes in the 2D setting.
Resumo:
The properties of the localized states of a two-component Bose-Einstein condensate confined in a nonlinear periodic potential (nonlinear optical lattice) are investigated. We discuss the existence of different types of solitons and study their stability by means of analytical and numerical approaches. The symmetry properties of the localized states with respect to nonlinear optical lattices are also investigated. We show that nonlinear optical lattices allow the existence of bright soliton modes with equal symmetry in both components and bright localized modes of mixed symmetry type, as well as dark-bright bound states and bright modes on periodic backgrounds. In spite of the quasi-one-dimensional nature of the problem, the fundamental symmetric localized modes undergo a delocalizing transition when the strength of the nonlinear optical lattice is varied. This transition is associated with the existence of an unstable solution, which exhibits a shrinking (decaying) behavior for slightly overcritical (undercritical) variations in the number of atoms.
Resumo:
We analyze the irreversibility and the entropy production in nonequilibrium interacting particle systems described by a Fokker-Planck equation by the use of a suitable master equation representation. The irreversible character is provided either by nonconservative forces or by the contact with heat baths at distinct temperatures. The expression for the entropy production is deduced from a general definition, which is related to the probability of a trajectory in phase space and its time reversal, that makes no reference a priori to the dissipated power. Our formalism is applied to calculate the heat conductance in a simple system consisting of two Brownian particles each one in contact to a heat reservoir. We show also the connection between the definition of entropy production rate and the Jarzynski equality.
Resumo:
We show theoretically and experimentally that scattered light by thermal phonons inside a second-order nonlinear crystal is the source of additional phase noise observed in optical parametric oscillators. This additional phase noise reduces the quantum correlations and has hitherto hindered the direct production of multipartite entanglement in a single nonlinear optical system. We cooled the nonlinear crystal and observed a reduction in the extra noise. Our treatment of this noise can be successfully applied to different systems in the literature.
Resumo:
We have performed a systematic study of the magnetic properties of a series of ferrimagnetic nanoparticles of Mg(x)Fe(3-x)O(4) (0.8 <= x <= 1.5) prepared by the combustion reaction method. The magnetization data can be well fitted by Bloch's law with T(3/2). Bloch's constant B determined from the fitting procedure was found to increase with Mg content x from similar to 3.09 X 10(-5) K(-3/2) for x = 0.8 to 6.27 X 10(-5) K(-3/2) for x=1.5. The exchange integral J(AB) and the spin-wave stiffness constant D of Mg(x)Fe(3-x)O(4) nanoparticles were also determined as similar to 0.842 and 0.574 meV and 296 and 202 meV angstrom(2) for specimens with x=0.8 and 1.5, respectively. These results are discussed in terms of cation redistribution among A and B sites on these nanostructured spinel ferrites. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3359709]
Resumo:
The local-density approximation (LDA) together with the half occupation (transitionstate) is notoriously successful in the calculation of atomic ionization potentials. When it comes to extended systems, such as a semiconductor infinite system, it has been very difficult to find a way to half ionize because the hole tends to be infinitely extended (a Bloch wave). The answer to this problem lies in the LDA formalism itself. One proves that the half occupation is equivalent to introducing the hole self-energy (electrostatic and exchange correlation) into the Schrodinger equation. The argument then becomes simple: The eigenvalue minus the self-energy has to be minimized because the atom has a minimal energy. Then one simply proves that the hole is localized, not infinitely extended, because it must have maximal self-energy. Then one also arrives at an equation similar to the self- interaction correction equation, but corrected for the removal of just 1/2 electron. Applied to the calculation of band gaps and effective masses, we use the self- energy calculated in atoms and attain a precision similar to that of GW, but with the great advantage that it requires no more computational effort than standard LDA.
Resumo:
We experimentally study the Aharonov-Bohm-conductance oscillations under external gate voltage in a semiconductor quantum ring with a radius of 80 nm. We find that, in the linear regime, the resistance-oscillation plot in the voltage-magnetic-field plane corresponds to the quantum ring energy spectra. The chessboard pattern assembled by resistance diamonds, while loading the ring, is attributed to a short electron lifetime in the open configuration, which agrees with calculations within the single-particle model. Remarkably, the application of a small dc current allows observing strong deviations in the oscillation plot from this pattern accompanied by a magnetic-field symmetry break. We relate such behavior to the higher-order-conductance coefficients determined by electron-electron interactions in the nonlinear regime.