252 resultados para INSPIRATORY MUSCLE TRAINING
Resumo:
Long-term adaptation to resistance training is probably due to the cumulative molecular effects of each exercise session. Therefore, we studied in female Wistar rats the molecular effects of a chronic resistance training regimen (3 months) leading to skeletal muscle hypertrophy in the plantaris muscle. Our results demonstrated that muscle proteolytic genes MuRF-1 and Atrogin-1 were significantly decreased in the exercised group measured 24 h after the last resistance exercise session (41.64 and 61.19%, respectively; P < 0.05). Nonetheless, when measured at the same time point, 4EBP-1, GSK-3 beta and eIF2B epsilon mRNA levels and Akt, GSK-3 beta and p70S6K protein levels (regulators of translation initiation) were not modified. Such data suggests that if gene transcription constitutes a control point in the protein synthesis pathway this regulation probably occurs in early adaptation periods or during extreme situations leading to skeletal muscle remodeling. However, proteolytic gene expression is modified even after a prolonged resistance training regimen leading to moderate skeletal muscle hypertrophy.
Resumo:
Evidence of mild hypertension in women and female rats and our preliminary observation showing that training is not effective to reduce pressure in female as it does in male spontaneously hypertensive rats (SHR) prompt us to investigate the effects of gender on hemodynamic pattern and microcirculatory changes induced by exercise training. Female SHR and normotensive controls (Wistar- Kyoto rats) were submitted to training (55% VO2 peak; 3 months) or kept sedentary and instrumented for pressure and hindlimb flow measurements at rest and during exercise. Heart, kidney, and skeletal muscles (locomotor/ nonlocomotor) were processed for morphometric analysis of arterioles, capillaries, and venules. High pressure in female SHR was accompanied by an increased arteriolar wall: lumen ratio in the kidney (+30%; P < 0.01) but an unchanged ratio in the skeletal muscles and myocardium. Female SHR submitted to training did not exhibit further changes on the arteriolar wall: lumen ratio and pressure, showing additionally increased hindlimb resistance at rest (+29%; P < 0.05). On the other hand, female SHR submitted to training exhibited increased capillary and venular densities in locomotor muscles (+50% and 2.3- fold versus sedentary SHR, respectively) and normalized hindlimb flow during exercise hyperemia. Left ventricle pressure and weight were higher in SHR versus WKY rats, but heart performance (positive dP/dt(max) and negative dP/dt(max)) was not changed by hypertension or training, suggesting a compensated heart function in female SHR. In conclusion, the absence of training- induced structural changes on skeletal muscle and myocardium arterioles differed from changes observed previously in male SHR, suggesting a gender effect. This effect might contribute to the lack of pressure fall in trained female SHRs.
Resumo:
OBJECTIVES To test the hypothesis that glyco protein 91phox (gp91(phox)) subunit of nicotinamide adenine dinucleotide phosphate [NAD(P) H] oxidase is a fundamental target for physical activity to ameliorate erectile dysfunction (ED). Vascular risk factors are reported to contribute to ED. Regular physical exercise prevents cardiovascular diseases by increasing nitric oxide (NO) production and/or decreasing NO inactivation. METHODS Male Wistar rats received the NO synthesis inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) for 4 weeks, after which animals were submitted to a run training program for another 4 weeks. Erectile functions were evaluated by in vitro cavernosal relaxations and intracavernous pressure measurements. Expressions of gp91(phox) subunit and neuronal nitric oxidase synthase in erectile tissue, as well as superoxide dismutase activity and nitrite/nitrate (NO(x)) levels were determined. RESULTS The in vitro acetylcholine-and electrical field stimulation-induced cavernosal relaxations, as well as the increases in intracavernous pressure were markedly reduced in sedentary rats treated with L-NAME. Run training significantly restored the impaired cavernosal relaxations. No alterations in the neuronal nitric oxidase synthase protein expression (and its variant penile neuronal nitric oxidase synthase) were detected. A reduction of NO(x) levels and superoxide dismutase activity was observed in L-NAME-treated animals, which was significantly reversed by physical training. Gene expression of subunit gp91(phox) was enhanced by approximately 2-fold in erectile tissue of L-NAME-treated rats, and that was restored to basal levels by run training. CONCLUSIONS Our study shows that ED seen after long-term L-NAME treatment is associated with gp91(phox) subunit upregulation and decreased NO bioavailability. Exercise training reverses the increased oxidative stress in NO-deficient rats, ameliorating the ED. UROLOGY 75: 961-967, 2010. (C) 2009 Elsevier Inc.
Resumo:
Endurance exercise is known to enhance peripheral insulin sensitivity and reduce insulin secretion. However, it is unknown whether the latter effect is due to the reduction in plasma substrate availability or alterations in beta-cell secretory machinery. Here, we tested the hypothesis that endurance exercise reduces insulin secretion by altering the intracellular energy-sensitive AMP-activated kinase (AMPK) signaling pathway. Male Wistar rats were submitted to endurance protocol training one, three, or five times per week, over 8 weeks. After that, pancreatic islets were isolated, and glucose-induced insulin secretion (GIIS), glucose transporter 2 (GLUT2) protein content, total and phosphorylated calmodulin kinase kinase (CaMKII), and AMPK levels as well as peroxisome proliferator-activated receptor-gamma coactivator-1-alpha (PGC-1 alpha) and uncoupling protein 2 (UCP2) content were measured. After 8 weeks, chronic endurance exercise reduced GIIS in a dose-response manner proportionally to weekly exercise frequency. Contrariwise, increases in GLUT2 protein content, CaMKII and AMPK phosphorylation levels were observed. These alterations were accompanied by an increase in UCP2 content, probably mediated by an enhancement in PGC-1 alpha protein expression. In conclusion, chronic endurance exercise induces adaptations in beta-cells leading to a reduction in GIIS, probably by activating the AMPK signaling pathway. Journal of Endocrinology (2011) 208, 257-264
Resumo:
The present study examined the effects of aerobic training and energy restriction on adipokines levels in mesenteric (MEAT) and retroperitoneal (RPAT) white adipose tissue from obese rats. Male Wistar rats were fed with standard laboratory diet (Control group) or high fat diet (HFD). After 15 weeks, HFD rats were randomly assigned to the following groups: rats submitted to HFD, which were sedentary (sedentary HFD, n = 8) or trained (trained HFD, n = 8); or submitted to energy-restriction (ER), which were sedentary (sedentary ER, n = 8) or trained (trained ER, n = 8). Trained rats ran on a treadmill at 55% VO(2max) for 60 min/day, 5 days/week, for 10 weeks. ER rats were submitted to a reduction of 20% daily caloric ingestion compared to the Control group. ER and aerobic training decreased body weight, MEAT and RPAT absolute weight, and fat mass. IL-6, IL-10 and TNF-alpha levels were decreased and adiponectin did not change in RPAT in response to ER protocol. On the other hand, ER and the aerobic training protocol decreased IL-6, TNF-alpha and adiponectin levels in MEAT. Absolute MEAT weight showed a positive correlation with IL-6 (r = 0.464), INF-alpha (r = 0.508); and adiponectin (r = 0.342). These results suggest a tissue-specific heterogeneous response in adipokines level. The combination of the protocols (aerobic training and energy restriction) did not induce an enhanced effect. Published by Elsevier Ltd.
Resumo:
Skeletal muscle is the source of pro- and anti-inflammatory cytokines, and recently, it has been recognized as an important source of interleukin-6 (IL-6). Acute physical exercise is known to induce a pro-inflammatory cytokine profile in the plasma. However, the effect of chronic physical exercise in the production of pro- and anti-inflammatory cytokines by the skeletal muscle has never been examined. We assessed IL-6, TNF-alpha, IL-1 beta and IL-10 levels in the skeletal muscle of rats submitted to endurance training. Animals were randomly assigned to either a Sedentary group (S, n = 7) or an endurance exercise trained group (T, n = 8). Trained rats ran on a treadmill for 5 days week(-1) for 8 weeks (60% VO(2max)). Detection of IL-6, TNF-alpha, IL-1 beta and IL-10 protein expression was carried out by ELISA. We found decreased expression of IL-1 beta, IL-6, TNF-alpha and IL-10 (28%, 27%. 32% and 37%, respectively, p < 0.05) in the extensor digital longus (EDL) from T, when compared with S. In the soleus, IL-1 beta, TNF-alpha and IL-10 protein levels were similarly decreased (34%, 42% and 50%, respectively, p < 0.05) in T in relation to S, while IL-6 expression was not affected by the training protocol. In conclusion, exercise training induced decreased cytokine protein expression in the skeletal muscle. These data show that in healthy rats, 8-week moderate-intensity aerobic training down regulates skeletal muscle production of cytokines involved in the onset, maintenance and regulation of inflammation, and that the response is heterogeneous according to fibre composition. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
Phototherapy improves cellular activation which is an important factor for the treatment of cellulite. The objective of this research was to develop and evaluate the effects of a new (noninvasive and nonpharmacological) clinical procedure to improve body aesthetics: infrared-LED (850 nm) plus treadmill training. Twenty women (25-55 years old) participated in this study. They were separated in two groups: the control group, which carried out only the treadmill training (n = 10), and the LED group, with phototherapy during the treadmill training (n - 10). The training was performed for 45 minutes twice a week over 3 months at intensities between 85% and 90% maximal heart rate (HR(max)). The irradiation parameters were 39 mW/cm(2) and a fluence of 106 J/cm(2). The treatment was evaluated by interpreting body composition parameters, photographs and thermography. This was primarily a treatment for cellulite with a reduction of saddlebag and thigh circumference. At the same time, the treadmill training prevented an increase of body fat, as well as the loss of lean mass. Moreover, thermal images of the temperature modification of the thighs are presented. These positive effects can result in a further improvement of body aesthetics using infrared-LED together with treadmill training.
Resumo:
OBJECTIVES: To evaluate the effect of a chewing exercise on pain intensity and pressure-pain threshold in patients with myofascial pain. METHODS: Twenty-nine consecutive women diagnosed with myofascial pain (MFP) according to the Research Diagnostic Criteria comprised the experimental group and 15 healthy age-matched female were used as controls. Subjects were asked to chew a gum stick for 9 min and to stay at rest for another 9 min afterwards. Pain intensity was rated on a visual analog scale (VAS) every 3 min. At 0, 9 and 18 min, the pressure-pain threshold (PPT) was measured bilaterally on the masseter and the anterior, medium, and posterior temporalis muscles. RESULTS: Patients with myofascial pain reported increase (76%) and no change (24%) on the pain intensity measured with the VAS. A reduction of the PPT at all muscular sites after the exercise and a non-significant recovery after rest were also observed. CONCLUSION: The following conclusions can be drawn: 1. there are at least two subtypes of patients with myofascial pain that respond differently to experimental chewing; 2. the chewing protocol had an adequate discriminative ability in distinguishing patients with myofascial pain from healthy controls.
Resumo:
PURPOSE: To analyze the effects of detachment and repositioning of the medial pterygoid muscle on the growth of the maxilla and mandible of young rats through cephalometry. METHODS: Thirty one-month-old Wistar rats were used, distributed into three groups: experimental, sham-operated and control. In the experimental group, unilateral detachment and repositioning of the medial pterygoid muscle was performed. The sham-operated group only underwent surgical access, and the control group did not undergo any procedure. The animals were sacrificed at the age of three months. Their soft tissues were removed and the mandible was disarticulated. Radiographs of the skull in axial projection and the hemimandibles in lateral projection were obtained, and cephalometry was performed. The values obtained were subjected to statistical analyses among the groups and between the sides in each group. RESULTS: There were significant differences in the length of the mandible relative to the angular process in the experimental group and in the height of the mandibular body in the sham-operated group. CONCLUSION: The experimental detachment and repositioning of the medial pterygoid muscle during the growth period in rats affected the growth of the angle region, resulting in asymmetry of the mandible.
Resumo:
This study analyzed the effects of the unilateral removal and dissection of the masseter muscle on the facial growth of young rats. A total of 30 one-month-old Wistar rats were used. Unilateral complete removal of the masseter muscle was performed in the removal group, and detachment followed by repositioning of the masseter muscle was performed in the dissection group, while only surgical access was performed in the sham-operated group. The animals were sacrificed at three months of age. Axial radiographic projections of the skulls and lateral projections of the hemimandibles were taken. Cephalometric evaluations were made and the values obtained were submitted to statistical analyses. In the removal group, there were contour alterations of the angular process, and a significant homolateral difference in the length of the maxilla and a significant bilateral difference in the height of the mandibular body and the length of the mandible were observed. Comparison among groups revealed significance only in the removal group. It was concluded that the experimental removal of the masseter muscle during the growing period in rats induced atrophic changes in the angular process, as well as asymmetry of the maxilla and shortening of the whole mandible.
Resumo:
Avaliou-se a repetibilidade da mensuração de imagens de ultrassom da área do músculo longissimus dorsi (AOL) e das espessuras de gordura subcutânea do lombo (EGL) e da garupa (EGG). Imagens de ultrassom tomadas no lombo (entre a 12ª e a 13ª costela) e na garupa (entre os músculos gluteus medium e biceps femoris) de novilhas Nelore de 14 a 22 meses de idade foram classificadas em aceitáveis, marginais e rejeitáveis. As imagens aceitáveis e marginais foram mensuradas duas vezes por três técnicos em diferentes níveis de treinamento. Foram estimadas as repetibilidades entre e dentro de técnicos por classe de qualidade da imagem, para determinação do efeito da qualidade da imagem e do técnico no valor absoluto da diferença entre a primeira e a segunda mensuração dessas características. A repetibilidade para as imagens aceitáveis foi maior que para imagens marginais, tanto entre como dentro de técnicos. Na análise da diferença absoluta entre a primeira e a segunda interpretação, foram significativos os efeitos de técnico para AOL e EGL e de classe de qualidade da imagem para AOL. Em geral, o técnico com maior experiência apresentou maiores valores de repetibilidade. É recomendável que a mensuração de imagens de animais de mesmo grupo contemporâneo seja feita por um único técnico.
Resumo:
PURPOSE: Thermal injury causes catabolic processes as the body attempts to repair the damaged area. This study evaluated the effects of a scald injury on the morphology of muscle fibers belonging to a muscle distant from the lesion. METHODS: Thirty Wistar rats were divided into control (C) and scalded (S) groups. Group S was scalded over 45% of the body surface, standardized by body weight. Rats in both groups were euthanized at four, seven and 14 days following the injury. The middle portions of the medial gastrocnemius muscles were sectioned, stained with hematoxylin and eosin and Picrosirius, and submitted to histological analysis. RESULTS: Control group sections exhibited equidistantly distributed polygonal muscle fibers with peripheral nuclei, characteristic of normal muscle. The injured group sections did not consistently show these characteristics; many fibers in these sections exhibited a rounded contour, variable stain intensities, and greater interfiber distances. A substantially increased amount of connective tissue was also observed on the injured group sections. CONCLUSION: This experimental model found a morphological change in muscle distant from the site of thermal injury covering 45% of the body surface.
Resumo:
O ácido graxo (AG) é uma importante fonte de energia para o músculo esquelético. Durante o exercício sua mobilização é aumentada para suprir as necessidades da musculatura ativa. Acredita-se que diversos pontos de regulação atuem no controle da oxidação dos AG, sendo o principal a atividade do complexo carnitina palmitoil transferase (CPT), entre os quais três componentes estão envolvidos: a CPT I, a CPT II e carnitina acilcarnitina translocase. A função da CPT I durante o exercício físico é controlar a entrada de AG para o interior da mitocôndria, para posterior oxidação do AG e produção de energia. Em resposta ao treinamento físico há um aumento na atividade e expressão da CPT I no músculo esquelético. Devido sua grande importância no metabolismo de lipídios, os mecanismos que controlam sua atividade e sua expressão gênica são revisados no presente estudo. Reguladores da expressão gênica de proteínas envolvidas no metabolismo de lipídios no músculo esquelético, os receptores ativados por proliferadores de peroxissomas (PPAR) alfa e beta, são discutidos com um enfoque na resposta ao treinamento físico.
Resumo:
OBJETIVO: Investigar em ratos obesos o efeito da prática de exercício resistido sobre a sensibilidade à insulina e sobre a expressão de citocinas pró-inflamatórias e de transportador de glicose em músculo solear. MATERIAIS E MÉTODOS: Ratos Wistar alimentados com dieta hiperlipídica (grupos obesos) foram submetidos ao protocolo de exercício tipo jump squat. A sensibilidade à insulina e a expressão gênica de Tnf-α, SOCS3 e GLUT4 foram comparadas entre os grupos obesos sedentários (OS) e exercitados (OE) e controles sedentários (CS) e exercitados (CE). RESULTADOS: A sensibilidade à insulina estava reduzida no grupo OS e elevada no OE. Os conteúdos de RNAm de Tnf-α e de SOCS3 estavam aumentados no músculo esquelético do grupo OS e reduzidos no OE. O conteúdo proteico e de RNAm de GLUT4 não diferiu entre os grupos. CONCLUSÃO: O exercício resistido reverte o quadro de resistência à insulina periférica e de inflamação no músculo esquelético de obesos induzidos por dieta.
Resumo:
Multiple cell membrane alterations have been reported to be the cause of various forms of hypertension. The present study focuses on the lipid portion of the membranes, characterizing the microviscosity of membranes reconstituted with lipids extracted from the aorta and mesenteric arteries of spontaneously hypertensive (SHR) and normotensive control rat strains (WKY and NWR). Membrane-incorporated phospholipid spin labels were used to monitor the bilayer structure at different depths. The packing of lipids extracted from both aorta and mesenteric arteries of normotensive and hypertensive rats was similar. Lipid extract analysis showed similar phospholipid composition for all membranes. However, cholesterol content was lower in SHR arteries than in normotensive animal arteries. These findings contrast with the fact that the SHR aorta is hyporeactive while the SHR mesenteric artery is hyperreactive to vasopressor agents when compared to the vessels of normotensive animal strains. Hence, factors other than microviscosity of bulk lipids contribute to the vascular smooth muscle reactivity and hypertension of SHR. The excess cholesterol in the arteries of normotensive animal strains apparently is not dissolved in bulk lipids and is not directly related to vascular reactivity since it is present in both the aorta and mesenteric arteries. The lower cholesterol concentrations in SHR arteries may in fact result from metabolic differences due to the hypertensive state or to genes that co-segregate with those that determine hypertension during the process of strain selection.