76 resultados para Hearing Sensitivity
Resumo:
Purpose: To compare baroreflex sensitivity among conscious rats of the same strain. Methods: Male WKY rats (eight weeks old) were studied. Cannulas were inserted into the abdominal aortic artery through the right femoral artery to measure mean arterial pressure (MAP) and heart rate (HR). Baroreflex gain was calculated as the ratio between variation of HR in function of the MAP variation (Delta HR/Delta MAP) tested with a depressor dose of sodium nitroprusside (SNP, 50 mu g/kg, iv) and with a pressor dose of phenylephrine (PE, 8 mu g/kg, iv). We divided the rats into four groups: 1) Low bradycardic baroreflex (LB), BG between -1 and -2 bpm/mmHg tested with PE; 2) High bradycardic baroreflex (HB), BG < -2 bpm/mmHg tested with PE; 3) Low tachycardic baroreflex (LT), BG between -1 and -2 bpm/mmHg tested with SNP and; 4) High tachycardic baroreflex (HT), BG < -2 bpm/mmHg tested with SNP. Significant differences were considered for p<0.05. Results: Approximately 82% of the rats presented reduced bradycardic reflex while 22 showed attenuated tachycardic reflex. No alterations were noted regarding basal MAP and HR, tachycardic and bradycardic peak and HR range. Conclusions: There was alteration in baroreflex sensitivity among rats of the same strain. Care should be taken when interpreting studies employing WKY as a control for the SHR.
Resumo:
In this study the baroreflex sensitivity of conscious, juvenile, spontaneously hypertensive rats (SHRs) was compared. The study population consisted of 19 eight-week-old male SHRs. The baroreflex sensitivity was quantified as the derivative of the variation in heart rate (HR) and the variation of mean arterial pressure (baroreflex sensitivity = Delta HR/Delta MAP). MAP was manipulated with sodium nitroprusside (SNP) and phenylephrine (PHE), administered via an inserted cannula in the right femoral vein. The SHRs were divided into four groups: (1) low bradycardic baroreflex (LB) where the baroreflex gain (BG) was between 0 and 1 bpm/mmHg with PHE; (2) high bradycardic baroreflex (HB), where the BG was < -1 bpm/mmHg with PHE; (3) low tachycardic baroreflex (LT) where the BC was between 0 and 3 bpm/mmHg with SNP; (4) high tachycardic baroreflex (HT) where the BG was > 3 bpm/mmHg with SNP. We noted that 36.8% of the rats presented with an increased bradycardic reflex, while 27.8% demonstrated an attenuated tachycardic reflex. No significant alterations were noted regarding the basal MAP and HR. There were significant differences in the baroreflex sensitivity between SHRs in the same laboratory. One should be careful when interpreting studies employing the SHR as a research model.
Resumo:
In the present study, a three-dimensional Eulerian photochemical model was employed to estimate the impact that organic compounds have on tropospheric ozone formation in the Metropolitan Area of Sao Paulo (MASP). In the year 2000, base case simulations were conducted in two periods: August 22-24 and March 13-15. Based on the pollutant concentrations calculated by the model, the correlation coefficient relative to observations for ozone ranged from 0.91 to 0.93 in both periods. In the simulations employed to evaluate the ozone potential of individual VOCs, as well as the sensitivity of ozone to the VOC/NO(x) emission ratio, the variation in anthropogenic emissions was estimated at 15% (according to tests performed previously variations of 15% were stable). Although there were significant differences between the two periods, ozone concentrations were found to be much more sensitive to VOCs than to NO(x) in both periods and throughout the study domain. In addition, considering their individual rates of emission from vehicles, the species/classes that were most important for ozone formation were as follows: aromatics with a kOH>2x 10(4) ppm(-1) min(-1); olefins with a kOH 7 x 10(4) ppm(-1) min(-1); olefins with a kOH 7 x 10(4) ppm(-1) min(-1); ethene; and formaldehyde, which are the principal species related to the production, transport, storage and combustion of fossil fuels.
Resumo:
Small local earthquakes from two aftershock sequences in Porto dos GaA(0)chos, Amazon craton-Brazil, were used to estimate the coda wave attenuation in the frequency band of 1 to 24 Hz. The time-domain coda-decay method of a single backscattering model is employed to estimate frequency dependence of the quality factor (Q (c)) of coda waves modeled usingwhere Q (0) is the coda quality factor at frequency of 1 Hz and eta is the frequency parameter. We also used the independent frequency model approach (Morozov, Geophys J Int, 175:239-252, 2008), based in the temporal attenuation coefficient, chi(f) instead of Q(f), given by the equation for the calculation of the geometrical attenuation (gamma) and effective attenuation Q (c) values have been computed at central frequencies (and band) of 1.5 (1-2), 3.0 (2-4), 6.0 (4-8), 9.0 (6-12), 12 (8-16), and 18 (12-24) Hz for five different datasets selected according to the geotectonic environment as well as the ability to sample shallow or deeper structures, particularly the sediments of the Parecis basin and the crystalline basement of the Amazon craton. For the Parecis basin for the surrounding shield and for the whole region of Porto dos GaA(0)chos Using the independent frequency model, we found: for the cratonic zone, gamma = 0.014 s (-aEuro parts per thousand 1), nu a parts per thousand 1.12; for the basin zone with sediments of similar to 500 m, gamma = 0.031 s (-aEuro parts per thousand 1), nu a parts per thousand 1.27; and for the Parecis basin with sediments of similar to 1,000 m, gamma = 0.047 s (-aEuro parts per thousand 1), nu a parts per thousand 1.42. Analysis of the attenuation factor (Q (c)) for different values of the geometrical spreading parameter (nu) indicated that an increase of nu generally causes an increase in Q (c), both in the basin as well as in the craton. But the differences in the attenuation between different geological environments are maintained for different models of geometrical spreading. It was shown that the energy of coda waves is attenuated more strongly in the sediments, (in the deepest part of the basin), than in the basement, (in the craton). Thus, the coda wave analysis can contribute to studies of geological structures in the upper crust, as the average coda quality factor is dependent on the thickness of sedimentary layer.
Resumo:
This study alms at observing the effect of low-density lipoprotein (LDL) receptor deficiency in cholesterol blood levels, baroreflex sensitivity (BRS), nitric oxide (NO) bioavailability, and oxidative stress. The lack of LDL receptors in mice significantly increased the cholesterol blood levels (179 +/- 35 vs. 109 +/- 13 mg/dL) in the knockout (KO) mice compared to control. There was no difference in basal mean arterial pressure and heart rate between the groups. However, in KO mice the BRS was significantly attenuated and the antioxidant enzyme activities, measured in erythrocytes and heart, were significantly decreased. On the other hand, the oxidative damage measured by chemiluminescence and carbonyls was increased, while total plasma nitrate levels were lower in KO mice, indicating a decrease in NO availability. In conclusion, these results indicate that the lack of LDL receptor increased cholesterol blood levels, induced oxidative stress and decreased BRS. (C) 2008 Elsevier GmbH. All rights reserved.
Resumo:
Background and aim: Knowledge about the genetic factors responsible for noise-induced hearing loss (NIHL) is still limited. This study investigated whether genetic factors are associated or not to susceptibility to NIHL. Subjects and methods: The family history and genotypes were studied for candidate genes in 107 individuals with NIHL, 44 with other causes of hearing impairment and 104 controls. Mutations frequently found among deaf individuals were investigated (35delG, 167delT in GJB2, Delta(GJB6- D13S1830), Delta(GJB6- D13S1854) in GJB6 and A1555G in MT-RNR1 genes); allelic and genotypic frequencies were also determined at the SNP rs877098 in DFNB1, of deletions of GSTM1 and GSTT1 and sequence variants in both MTRNR1 and MTTS1 genes, as well as mitochondrial haplogroups. Results: When those with NIHL were compared with the control group, a significant increase was detected in the number of relatives affected by hearing impairment, of the genotype corresponding to the presence of both GSTM1 and GSTT1 enzymes and of cases with mitochondrial haplogroup L1. Conclusion: The findings suggest effects of familial history of hearing loss, of GSTT1 and GSTM1 enzymes and of mitochondrial haplogroup L1 on the risk of NIHL. This study also described novel sequence variants of MTRNR1 and MTTS1 genes.
Resumo:
Samples from 30 deaf probands exhibiting features suggestive of syndromic mitochondrial deafness or from families with maternal transmission of deafness were selected for investigation of mutations in the mitochondrial genes MT-RNR1 and MT-TS1. Patients with mutation m. 1555A>G had been previously excluded from this sample. In the MT-RNR1 gene, five probands presented the m. 827A>G sequence variant, of uncertain pathogenicity. This change was also detected in 66 subjects of an unaffected control sample of 306 Brazilian individuals from various ethnic backgrounds. Given its high frequency, we consider it unlikely to have a pathogenic role on hereditary deafness. As to the MT-TS1 gene, one proband presented the previously known pathogenic m. 7472insC mutation and three probands presented a novel variant, m. 7462C>T, which was absent from the same control sample of 306 individuals. Because of its absence in control samples and association with a family history of hearing impairment, we suggest it might be a novel pathogenic mutation.
Resumo:
The cause of hearing impairment has not been elucidated in a large proportion of patients. We screened by 1-Mb array-based comparative genomic hybridization (aCGH) 29 individuals with syndromic hearing impairment whose clinical features were not typical of known disorders. Rare chromosomal copy number changes were detected in eight patients, four de novo imbalances and four inherited from a normal parent. The de novo alterations define candidate chromosome segments likely to harbor dosage-sensitive genes related to hearing impairment, namely 1q23.3-q25.2, 2q22q23, 6p25.3 and 11q13.2-q13.4. The rare imbalances also present in normal parents might be casually associated with hearing impairment, but its role as a predisposition gene remains a possibility. Our results show that syndromic deafness is frequently associated with chromosome microimbalances (14-27%), and the use of aCGH for defining disease etiology is recommended.
Resumo:
Objective: Hereditary nonsyndromic deafness is an autosomal recessive condition in about 80% of cases, and point mutations in the GJB2 gene (connexin 26) and two deletions in the GJB6 gene (connexin 30), del(GJB6-D13S1830) and del(GJB6-D13S1854), are reported to account for 50% of recessive deafness, Aiming at establishing the frequencies of GJB2 mutations and GJB6 deletions in the Brazilian population, we screened 300 unrelated individuals with hearing impairment, who were not affected by known deafness related syndromes. Methods: We firstly screened the most frequently reported mutations, c.35delG and c.167delT in the GJB2 gene, and del(GJB6-D13S1830) and del(GJB6-D13S1854) in the GJB6 gene, through specific techniques. The detected c.35delG and c.167delT mutations were validated by sequencing. Other mutations in the GJB2 gene were screened by single-strand conformation polymorphism and the coding region was sequenced when abnormal patterns were found. Results: Pathogenic mutations in GJB2 and GJB6 genes were detected in 41 individuals (13.7%), and 80.5% (33/41) presented these mutations in homozygosis or compound heterozygosis, thus explaining their hearing defect. The c.35delG in the GJB2 gene was the most frequent mutation (37/300; 12.4%), detected in 23% familial and 6.2% the sporadic cases. The second most frequent mutation (1%; 3/300) was the del(GJB6- D13S1830), always found associated with the c.35delG mutation. Nineteen different sequence variations were found in the GJB2 gene. In addition to the c.35delG mutation, nine known pathogenic alterations were detected 0 67delT, p.Trp24X, p.Val37lle, c.176_191del16, c.235delC, p.Leu90Pro, p.Arg127His, c.509insA, and p.Arg184Pro, Five substitutions had been previously considered benign polymorphisms: c.-15C>T, p.Val27lle, p.Met34hr, p.Ala40Ala, and p.Gly160Ser. Two previously reported Mutations of unknown pathogenicity were found (p.Lys168Arg, and c.684C>A), and two novel substitutions, p.Leu81Val (c.G241C) and p.Met195Val (c.A583G), both in heterozygosis without an accompanying mutation in the other allele. None of these latter four variants of undefined status was present in a sample of 100 hearing controls. Conclusions: The present study demonstrates that Mutations in the GJB2 gene and del(GJB6 D13S1830) are important causes of hearing impairment in Brazil, thus justifying their screening in a routine basis. The diversity of variants in our sample reflects the ethnic heterogeneity of the Brazilian population.
Resumo:
Resistance of Leishmania parasites to specific chemotherapy has become a well-documented problem in the Indian subcontinent in recent years but only a few studies have focused on the susceptibility of American Leishmania isolates. Our susceptibility assays to meglumine antimoniate were performed against intracellular amastigotes after standardizing an in vitro model of macrophage infection appropriate for Leishmania (Viannia) braziliensis isolates. For the determination of promastigote susceptibility to amphotericin B, we developed a simplified MTT-test. The sensitivity in vitro to meglumine antimoniate and amphotericin B of 13 isolates obtained from Brazilian patients was determined. L. (V.) braziliensis isolates were more susceptible to meglumine antimoniate than Leishmania (Leishmania) amazonensis. EC(50), EC(90) and activity indexes (calculated over the sensitivity of reference strains), suggested that all isolates tested were susceptible in vitro to meglumine antimoniate, and did not show association with the clinical outcomes. Isolates were also uniformly susceptible in vitro to amphotericin B.
Resumo:
Aims: In our previous work, we reported that the insulin potentiating effect on melatonin synthesis is regulated by a post-transcriptional mechanism. However, the major proteins of the insulin signaling pathway (ISP) and the possible pathway component recruited on the potentiating effect of insulin had not been characterized. A second question raised was whether windows of sensitivity to insulin exist in the pineal gland due to insulin rhythmic secretion pattern. Main methods: Melatonin content from norepinephrine(NE)-synchronized pineal gland cultures was quantified by high performance liquid chromatography with electrochemical detection and arylalkylamine-N-acetyltransferase (AANAT) activity was assayed by radiometry. Immunoblotting and immunoprecipitation techniques were performed to establish the ISP proteins expression and the formation of 14-3-3: AANAT complex, respectively. Key findings: The temporal insulin susceptibility protocol revealed two periods of insulin potentiating effect, one at the beginning and another one at the end of the in vitro induced ""night"". In some Timed-insulin Stimulation (TSs), insulin also promoted a reduction on melatonin synthesis, showing its dual action in cultured pineal glands. The major ISP components, such as IR beta, IGF-1R, IRS-1, IRS-2 and PI3K(p85), as well tyrosine phosphorylation of pp85 were characterized within pineal glands. Insulin is not involved in the 14-3-3:AANAT complex formation. The blockage of PI3K by LY 294002 reduced melatonin synthesis and AANAT activity. Significance: The present study demonstrated windows of differential insulin sensitivity, a functional ISP and the PI3K-dependent insulin potentiating effect on NE-mediated melatonin synthesis, supporting the hypothesis of a crosstalk between noradrenergic and insulin pathways in the rat pineal gland. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Although glucocorticoids are widely used as antiinflammatory agents in clinical therapies, they may cause serious side effects that include insulin resistance and hyperinsulinemia. To study the potential functional adaptations of the islet of Langerhans to in vivo glucocorticoid treatment, adult Wistar rats received dexamethasone (DEX) for 5 consecutive days, whereas controls (CTL) received only saline. The analysis of insulin release in freshly isolated islets showed an enhanced secretion in response to glucose in DEX-treated rats. The study of Ca(2+) signals by fluorescence microscopy also demonstrated a higher response to glucose in islets from DEX-treated animals. However, no differences in Ca(2+) signals were found between both groups with tolbutamide or KCl, indicating that the alterations were probably related to metabolism. Thus, mitochondrial function was explored by monitoring oxidation of nicotinamide dinucleotide phosphate autofluorescence and mitochondrial membrane potential. Both parameters revealed a higher response to glucose in islets from DEX-treated rats. The mRNA and protein content of glucose transporter-2, glucokinase, and pyruvate kinase was similar in both groups, indicating that changes in these proteins were probably not involved in the increased mitochondrial function. Additionally, we explored the status of Ca(2+)-dependent signaling kinases. Unlike calmodulin kinase II, we found an augmented phosphorylation level of protein kinase C alpha as well as an increased response of the phospholipase C/inositol 1,4,5-triphosphate pathway in DEX-treated rats. Finally, an increased number of docked secretory granules were observed in the beta-cells of DEX animals using transmission electron microscopy. Thus, these results demonstrate that islets from glucocorticoid-treated rats develop several adaptations that lead to an enhanced stimulus-secretion coupling and secretory capacity. (Endocrinology 151: 85-95, 2010)
Resumo:
Complex networks obtained from real-world networks are often characterized by incompleteness and noise, consequences of imperfect sampling as well as artifacts in the acquisition process. Because the characterization, analysis and modeling of complex systems underlain by complex networks are critically affected by the quality and completeness of the respective initial structures, it becomes imperative to devise methodologies for identifying and quantifying the effects of the sampling on the network structure. One way to evaluate these effects is through an analysis of the sensitivity of complex network measurements to perturbations in the topology of the network. In this paper, measurement sensibility is quantified in terms of the relative entropy of the respective distributions. Three particularly important kinds of progressive perturbations to the network are considered, namely, edge suppression, addition and rewiring. The measurements allowing the best balance of stability (smaller sensitivity to perturbations) and discriminability (separation between different network topologies) are identified with respect to each type of perturbation. Such an analysis includes eight different measurements applied on six different complex networks models and three real-world networks. This approach allows one to choose the appropriate measurements in order to obtain accurate results for networks where sampling bias cannot be avoided-a very frequent situation in research on complex networks.
Resumo:
The thermoluminescence (TL) characteristics of quartz are highly dependent of its thermal history. Based on the enhancement of quartz luminescence occurred after heating, some authors proposed to use quartz TL to recover thermal events that affected quartz crystals. However, little is know about the influence of the temperature of quartz crystallization on its TL characteristics. In the present study, we evaluate the TL sensitivity and dose response curves of hydrothermal and metamorphic quartz with crystallization temperatures from 209 +/- 15 to 633 +/- 27 degrees C determined through fluid inclusion and mineral chemistry analysis. The studied crystals present a cooling thermal history, which allow the acquiring of their natural TL without influence of heating after crystallization. The TL curves of the studied samples present two main components formed by different peaks overlapped around 110 C and 200-400 degrees C. The TL sensitivity in the 200-400 degrees C region increases linearly with the temperature of quartz crystallization. No relationship was observed between temperatures of quartz crystallization and saturation doses (<100 Gy). The elevated TL sensitivity of the high temperature quartz is attributed to the control exerted by the temperature of crystallization on the substitution of Si(4+) by ions such as Al(3+) and Ti(4+), which produce defects responsible for luminescence phenomena. The linear relationship observed between TL in the 200-400 degrees C region and crystallization temperature has potential use as a quartz geothermometer. The relative abundance of quartz in the earth crust and the easiness to measure TL are advantageous in relation to geothermometry methods based on chemistry of other minerals. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The optically stimulated luminescence (OSL) sensitivity of quartz has a significant influence on luminescence dating procedures. Furthermore, identifying the natural controls of quartz OSL sensitivity is an important step towards new applications of OSL in geology such as provenance tracing. We evaluate the OSL sensitivity (total and the proportion of the informally assigned fast, medium and slow components) of single grains of quartz extracted from 10 different igneous and metamorphic rocks with known formation conditions; and from fluvial and coastal sediments with different sedimentary histories and known source rocks. This sample suite allows assessment of the variability of the OSL sensitivity of single quartz grains with respect to their primary origin and sedimentary history. We observed significant variability in the OSL sensitivity of grains within all studied rock and sediment samples, with the brightest grains of each sample being those dominated by the fast component. Quartz from rocks formed under high temperature (> 500 degrees C) conditions, such as rhyolites and metamorphic rocks from the amphibolite facies, display higher OSL sensitivity. The OSL sensitivity of fluvial sediments which have experienced only a short transport distance is relatively low. These sediments show a small increase in OSL sensitivity downstream, mainly due to a decreasing fraction of ""dim"" grains. The quartz grains from coastal sands present very high sensitivity and variability, which is consistent with their long sedimentary history. The high variability of the OSL sensitivity of quartz from coastal sands is attributed more to the mixture of grains with distinct sedimentary histories than to the provenance from many types of source rocks. The temperature of crystallization and the number of cycles of burial and solar exposure are suggested as the main natural factors controlling the OSL sensitivity of quartz grains. The increase in OSL sensitivity due to cycles of erosion and deposition surpasses the sensitivity inherited from the source rock, with this increase being mainly related to the sensitization of fast OSL components. The discrimination of grains with different sedimentary histories through their OSL sensitivities can allow the development of quantitative provenance methods based on quartz. (C) 2010 Elsevier B.V. All rights reserved.