127 resultados para Earthquake resistant design.
Resumo:
Distribution of timing signals is an essential factor for the development of digital systems for telecommunication networks, integrated circuits and manufacturing automation. Originally, this distribution was implemented by using the master-slave architecture with a precise master clock generator sending signals to phase-locked loops (PLL) working as slave oscillators. Nowadays, wireless networks with dynamical connectivity and the increase in size and operation frequency of the integrated circuits suggest that the distribution of clock signals could be more efficient if mutually connected architectures were used. Here, mutually connected PLL networks are studied and conditions for synchronous states existence are analytically derived, depending on individual node parameters and network connectivity, considering that the nodes are nonlinear oscillators with nonlinear coupling conditions. An expression for the network synchronisation frequency is obtained. The lock-in range and the transmission error bounds are analysed providing hints to the design of this kind of clock distribution system.
Resumo:
Cementitious stabilization of aggregates and soils is an effective technique to increase the stiffness of base and subbase layers. Furthermore, cementitious bases can improve the fatigue behavior of asphalt surface layers and subgrade rutting over the short and long term. However, it can lead to additional distresses such as shrinkage and fatigue in the stabilized layers. Extensive research has tested these materials experimentally and characterized them; however, very little of this research attempts to correlate the mechanical properties of the stabilized layers with their performance. The Mechanistic Empirical Pavement Design Guide (MEPDG) provides a promising theoretical framework for the modeling of pavements containing cementitiously stabilized materials (CSMs). However, significant improvements are needed to bring the modeling of semirigid pavements in MEPDG to the same level as that of flexible and rigid pavements. Furthermore, the MEPDG does not model CSMs in a manner similar to those for hot-mix asphalt or portland cement concrete materials. As a result, performance gains from stabilized layers are difficult to assess using the MEPDG. The current characterization of CSMs was evaluated and issues with CSM modeling and characterization in the MEPDG were discussed. Addressing these issues will help designers quantify the benefits of stabilization for pavement service life.
Resumo:
A new concept and a preliminary study for a monocolumn floating unit are introduced, aimed at exploring and producing oil in ultradeep waters. This platform, which combines two relevant features-great oil storage capacity and dry tree production capability-comprises two bodies with relatively independent heave motions between them. A parametric model is used to define the main design characteristics of the floating units. A set of design alternatives is generated using this procedure. These solutions are evaluated in terms of stability requirements and dynamic response. A mathematical model is developed to estimate the first order heave and pitch motions of the platform. Experimental tests are carried out in order to calibrate this model. The response of each body alone is estimated numerically using the WAMIT (R) code. This paper also includes a preliminary study on the platform mooring system and appendages. The study of the heave plates presents the gain, in terms of decreasing the motions, achieved by the introduction of the appropriate appendages to the platform. [DOI: 10.1115/1.4001429]
Resumo:
The aim of this paper is to present an economical design of an X chart for a short-run production. The process mean starts equal to mu(0) (in-control, State I) and in a random time it shifts to mu(1) > mu(0) (out-of-control, State II). The monitoring procedure consists of inspecting a single item at every m produced ones. If the measurement of the quality characteristic does not meet the control limits, the process is stopped, adjusted, and additional (r - 1) items are inspected retrospectively. The probabilistic model was developed considering only shifts in the process mean. A direct search technique is applied to find the optimum parameters which minimizes the expected cost function. Numerical examples illustrate the proposed procedure. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The well-known modified Garabedian-Mcfadden (MGM) method is an attractive alternative for aerodynamic inverse design, for its simplicity and effectiveness (P. Garabedian and G. Mcfadden, Design of supercritical swept wings, AIAA J. 20(3) (1982), 289-291; J.B. Malone, J. Vadyak, and L.N. Sankar, Inverse aerodynamic design method for aircraft components, J. Aircraft 24(2) (1987), 8-9; Santos, A hybrid optimization method for aerodynamic design of lifting surfaces, PhD Thesis, Georgia Institute of Technology, 1993). Owing to these characteristics, the method has been the subject of several authors over the years (G.S. Dulikravich and D.P. Baker, Aerodynamic shape inverse design using a Fourier series method, in AIAA paper 99-0185, AIAA Aerospace Sciences Meeting, Reno, NV, January 1999; D.H. Silva and L.N. Sankar, An inverse method for the design of transonic wings, in 1992 Aerospace Design Conference, No. 92-1025 in proceedings, AIAA, Irvine, CA, February 1992, 1-11; W. Bartelheimer, An Improved Integral Equation Method for the Design of Transonic Airfoils and Wings, AIAA Inc., 1995). More recently, a hybrid formulation and a multi-point algorithm were developed on the basis of the original MGM. This article discusses applications of those latest developments for airfoil and wing design. The test cases focus on wing-body aerodynamic interference and shock wave removal applications. The DLR-F6 geometry is picked as the baseline for the analysis.
Resumo:
Maize breeding programmes in Brazil and elsewhere seek reliable methods to identify genotypes resistant to Phaeosphaeria leaf spot. The area under the disease progress curve (AUDPC) is an accurate method to evaluate the severity of foliar diseases. However, at least three data points are required to calculate the AUDPC, which is unfeasible when there are thousands of genotypes to be assessed. The aim of this work was to estimate the heritability of disease resistance, evaluate disease severity at different times using a nine-point scale in comparison to the AUDPC, and establish the most suitable phenological period for disease assessment. A repeated experiment was conducted in a 11 x 11 lattice experimental design with three replications. Disease assessments were carried out at flowering, 15 and 30 days post-anthesis for the parental lines DS95, DAS21, the F1 generation and 118 F2:3 progenies. Then, the AUDPC was obtained and results compared with the single-point evaluations used to calculate it. Individual and joint analyses of variance were conducted to obtain heritabiliy estimates. The assessments performed after the flowering stage gave higher estimates of heritability and correlation with AUDPC. We concluded that one assessment between the 15th and 30th day after flowering could provide enough information to distinguish maize genotypes for their resistance to Phaeosphaeria leaf spot under tropical conditions.
Resumo:
Chitinase and peroxidase activity in different stages of eucalypt leaves after inoculation with Puccinia psidii and acibenzolar-S-metil To elucidate some biochemical processes during infection in the pathosystem Puccinia psidii x eucalyptus, the defense metabolism in different-stage leaves was compared between rust-resistant and susceptible clones, respectively. In addition, chitinase and peroxidase activities were assayed. Each treatment consisted of 4 replicates, in a completely randomized design: 2 clones, inoculated and not inoculated with P. psidii; sprayed with acibenzolar-S-methyl (ASM) and distilled water; and represented by the 1(st) leaf pair (size equivalent to 1/5 total leaf development), 2(nd) pair (2/5 total development), and 4(th) pair (4/5 total leaf length). Leaves were harvested in 4 periods: 0, 24, 72 and 96 hours after inoculation. Results indicated that ASM treatment or P. psidii action led to higher chitinase and peroxidase activity level but did not alter the expression of these activities in developed leaves (4(th) pair) during the experiment. Alterations in enzyme levels after inoculation were only observed in developing leaves (1(st) and 2(nd) pairs), which suggests that the response to infection was concomitant to chitinase and peroxidase synthesis. The highest increases in enzymatic activities were observed in resistant clones at 72 hours after inoculation and in susceptible ones previously treated with ASM and later inoculated with the pathogen.
Resumo:
Glyphosate is a wide spectrum, non-selective, post-emergence herbicide. It acts on the shikimic acid pathway inhibiting 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), thus obstructing the synthesis of tryptophan, phenylalanine, tyrosine and other secondary products, leading to plant death. Transgenic glyphosate-resistant (GR) soybean [Glycine max (L.)] expressing an glyphosate-insensitive EPSPS enzyme has provided new opportunities for weed control in soybean production. The effect of glyphosate application on chlorophyll level, lipid peroxidation, catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GOPX) and superoxide dismutase (SOD) activities, soluble amino acid levels and protein profile, in leaves and roots, was examined in two conventional (non-GR) and two transgenic (GR) soybean. Glyphosate treatment had no significant impact on lipid peroxidation, whilst the chlorophyll content decreased in only one non-GR cultivar. However, there was a significant increase in the levels of soluble amino acid in roots and leaves, more so in non-GR than in GR soybean cultivars. Root CAT activity increased in non-GR cultivars and was not altered in GR cultivars. In leaves, CAT activity was inhibited in one non-GR and one GR cultivar. GOPX activity increased in one GR cultivar and in both non-GR cultivars. Root APX activity increased in one GR cultivar. The soluble protein profiles as assessed by 1-D gel electrophoresis of selected non-GR and GR soybean lines were unaffected by glyphosate treatment. Neither was formation of new isoenzymes of SOD and CAT observed when these lines were treated by glyphosate. The slight oxidative stress generated by glyphosate has no relevance to plant mortality. The potential antioxidant action of soluble amino acids may be responsible for the lack of lipid peroxidation observed. CAT activity in the roots and soluble amino acids in the leaves can be used as indicators of glyphosate resistance.
Resumo:
Genetic transformation with genes that code for antimicrobial peptides has been an important strategy used to control bacterial diseases in fruit crops, including apples, pears, and citrus. Asian citrus canker (ACC) caused by Xanthomonas citri subsp. citri Schaad et al. (Xcc) is a very destructive disease, which affects the citrus industry in most citrus-producing areas of the world. Here, we report the production of genetically transformed Natal, Pera, and Valencia sweet orange cultivars (Citrus sinensis L. Osbeck) with the insect-derived attacin A (attA) gene and the evaluation of the transgenic plants for resistance to Xcc. Agrobacterium tumefaciens Smith and Towns-mediated genetic transformation experiments involving these cultivars led to the regeneration of 23 different lines. Genetically transformed plants were identified by polymerase chain reaction, and transgene integration was confirmed by Southern blot analyses. Transcription of attA gene was detected by Northern blot analysis in all plants, except for one Natal sweet orange transformation event. Transgenic lines were multiplied by grafting onto Rangpur lime rootstock plants (Citrus limonia Osbeck) and spray-inoculated with an Xcc suspension (10(6) cfu mL(-1)). Experiments were repeated three times in a completely randomized design with seven to ten replicates. Disease severity was determined in all transgenic lines and in the control (non-transgenic) plants 30 days after inoculation. Four transgenic lines of Valencia sweet orange showed a significant reduction in disease severity caused by Xcc. These reductions ranged from 58.3% to 77.8%, corresponding to only 0.16-0.30% of leaf diseased area as opposed to 0.72% on control plants. One transgenic line of Natal sweet orange was significantly more resistant to Xcc, with a reduction of 45.2% comparing to the control plants, with only 0.14% of leaf diseased area. Genetically transformed Pera sweet orange plants expressing attA gene did not show a significant enhanced resistance to Xcc, probably due to its genetic background, which is naturally more resistant to this pathogen. The potential effect of attacin A antimicrobial peptide to control ACC may be related to the genetic background of each sweet orange cultivar regarding their natural resistance to the pathogen.
Resumo:
Diagnosing herbicide-resistant weed populations is the first step for herbicide resistance management. Monitoring the nature, distribution, and abundance of the resistant plants in fields demands efficient and effective screening tests. Different glyphosate resistant populations of Lolium multiflorum (VA) and L. rigidum (C) were used in assays for testing their effectiveness to detect herbicide resistance. According to a Petri dish bioassay 7 days after treatment (DAT), the VA and the C populations were 27 and 31 times more resistant to glyphosate than the susceptible populations, L. multiflorum (SM) and L. rigidum (SR), respectively. On a whole-plant bioassay (21 DAT), the VA and the C populations were 6 and 11 times more resistant to glyphosate than their respective susceptible populations. The susceptible populations accumulated 2.5 and 1.4-fold more shikimic acid 48 hours after treatment (HAT), than the resistant VA and C. Glyphosate gradually inhibited net photosynthesis in all populations but at 48-72 HAT the resistant plants recovered, whereas no recovery was detected in susceptible populations. All assays were capable of detecting the resistant populations and this may be useful for farmers and consultants as an effective tool to reduce the spread of the resistant populations through quicker implementation of alternative weed management practices. However, they differed in time, costs and equipments necessaries for successfully carrying on the tests. Regarding costs, the cheapest ones were Petri dish and whole-plant bioassays, but they are time-consuming methods as the major constraints are the collection of seeds from the field and at least some weeks to evaluate the resistance. The shikimic acid and net photosynthesis assays were the quickest ones but they demand sophisticated equipments which could restrict its use.
Resumo:
Sourgrass is a perennial weed infesting annual and perennial crops in Brazil. Three biotypes (R1, R2, and R3) of sourgrass suspected to be glyphosate-resistant (R) and another one (S) from a natural area without glyphosate application, in Brazil, were tested for resistance to glyphosate based on screening, dose-response, and shikimic acid assays. Both screening and dose-response assays confirmed glyphosate resistance in the three sourgrass biotypes. Dose-response assay indicated a resistance factor of 2.3 for biotype RI and 3.9 for biotypes R2 and R3. The hypothesis of a glyphosate resistance was corroborated on the basis of shikimic acid accumulation, where the S biotype accumulated 3.3, 5.0, and 5.7 times more shikimic acid than biotypes R1, R2, and R3, respectively, 168 h after treatment with 157.50 g ae ha(-1) of glyphosate. There were no differences in contact angle of spray droplets on leaves and spray retention, indicating that differential capture of herbicide by leaves was not responsible for resistance in these biotypes. The results confirmed resistance of sourgrass to glyphosate in Brazil.
Resumo:
The assessment of bacterial communities in soil gives insight into microbial behavior under prevailing environmental conditions. In this context, we assessed the composition of soil bacterial communities in a Brazilian sugarcane experimental field. The experimental design encompassed plots containing common sugarcane (variety SP80-1842) and its transgenic form (IMI-1 - imazapyr herbicide resistant). Plants were grown in such field plots in a completely randomized design with three treatments, which addressed the factors transgene and imazapyr herbicide application. Soil samples were taken at three developmental stages during plant growth and analyzed using 16S ribosomal RNA (rRNA)-based PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and clone libraries. PCR-DGGE fingerprints obtained for the total bacterial community and specific bacterial groups - Actinobacteria, Alphaproteobacteria and Betaproteobacteria - revealed that the structure of these assemblages did not differ over time and among treatments. Nevertheless, slight differences among 16S rRNA gene clone libraries constructed from each treatment could be observed at particular cut-off levels. Altogether, the libraries encompassed a total of eleven bacterial phyla and the candidate divisions TM7 and OP10. Clone sequences affiliated with the Proteobacteria, Actinobacteria, Firmicutes and Acidobacteria were, in this order, most abundant. Accurate phylogenetic analyses were performed for the phyla Acidobacteria and Verrucomicrobia, revealing the structures of these groups, which are still poorly understood as to their importance for soil functioning and sustainability under agricultural practices.
Resumo:
Cellular and humoral immune response, as well as cytokine gene expression, was assessed in Nelore cattle with different degrees of resistance to Cooperia punctata natural infection. One hundred cattle (male, weaned, 11-12 months old), kept together on pasture, were evaluated. Faecal and blood samples were collected for parasitological and immunological assays. Based on nematode faecal egg counts (FEC) and worm burden, the seven most resistant and the eight most susceptible animals were selected. Tissue samples of the small intestine were collected for histological quantification of inflammatory cells and analysis of cytokine gene expression (IL-2, IL-4, IL-8, IL-1 2p35, IL-13, TNF-alpha, IFN-gamma, MCP-1, MCP-2, and MUC- 1) using real-time RT-PCR. Mucus samples were also collected for IgA levels determination. Serum IgG1 mean levels against C. punctata antigens were higher in the resistant group, but significant differences between groups were only observed 14 days after the beginning of the experiment against infective larvae (1-3) and 14 and 84 days against adult antigens. The resistant group also presented higher IgA levels against C. punctata (L3 and adult) antigens with significant difference 14 days after the beginning of the trial (P < 0.05). In the small-intestine mucosa, levels of IgA anti-L3 and anti-adult C. punctata were higher in the resistant group, compared with the susceptible group (P < 0.05). Gene expression of both T(H)2 cytokines (IL-4 and IL-13) in the resistant group and T(H)1 cytokines (IL-2, IL-1 2p35, IFN-gamma and MCP-1) in the susceptible group was up-regulated. Such results suggested that immune response to C. punctata was probably mediated by TH2 cytokines in the resistant group and by T(H)1 cytokines in the susceptible group. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The objective of this research was to verify the effect of drying conditions on thermal properties and resistant starch content of green banana flour (Musa cavendishii). The green banana flour is a complex-carbohydrates source, mainly of resistant starch, and quantifying its gelatinization is important to understand how it affects food processing and the functional properties of the flour. The green banana flour was obtained by drying unripe peeled bananas (first stage of ripening) in a dryer tunnel at 52 degrees C, 55 degrees C and 58 degrees C and air velocity at 0.6 m s(-1), 1.0 m s(-1) and 1.4 m s(-1). The results obtained from differential scanning calorimetry, (DSC) curves show a single endothermic transition and a flow of maximum heating at peak temperatures from (67.95 +/- 0.31)degrees C to (68.63 +/- 0.28) degrees C. ANOVA shows that only drying temperature influenced significantly (P < 0.05) the gelatinization peak temperature (Tp). Gelatinization enthalpy (Delta H) varied from 9.04 J g(-1) to 11.63 J g(-1) and no significant difference was observed for either temperature or air velocity. The resistant starch content of the flour produced varied from (40.9 +/- 0.4) g/100 g to (58.5 +/- 5.4) g/100 g, on dry basis (d. b.), and was influenced by the combination of drying conditions: flour produced at 55 degrees C/1.4 m s(-1) and 55 degrees C/1.0 m s(-1) presented higher content of resistant starch. (c) 2009 Elsevier Ltd. All rights reserved
Resumo:
Tuberculosis is an infection caused mainly by Mycobacterium tuberculosis. A first-line antimycobacterial drug is pyrazinamide (PZA), which acts partially as a prodrug activated by a pyrazinamidase releasing the active agent, pyrazinoic acid (POA). As pyrazinoic acid presents some difficulty to cross the mycobacterial cell wall, and also the pyrazinamide-resistant strains do not express the pyrazinamidase, a set of pyrazinoic acid esters have been evaluated as antimycobacterial agents. In this work, a QSAR approach was applied to a set of forty-three pyrazinoates against M. tuberculosis ATCC 27294, using genetic algorithm function and partial least squares regression (WOLF 5.5 program). The independent variables selected were the Balaban index (I), calculated n-octanol/water partition coefficient (ClogP), van-der-Waals surface area, dipole moment, and stretching-energy contribution. The final QSAR model (N = 32, r(2) = 0.68, q(2) = 0.59, LOF = 0.25, and LSE = 0.19) was fully validated employing leave-N-out cross-validation and y-scrambling techniques. The test set (N = 11) presented an external prediction power of 73%. In conclusion, the QSAR model generated can be used as a valuable tool to optimize the activity of future pyrazinoic acid esters in the designing of new antituberculosis agents.