66 resultados para ALPHA-MSH
Resumo:
A new method for the preparation of alpha,beta-unsaturated diazoketones from aldehydes and a Horner-Wadsworth- Emmons reagent is reported. The method was applied to the short synthesis of two substituted pyrrolidines.
Resumo:
The biotransformation reactions of alpha-bromoacetophenone (1), p-bromo-alpha-bromoacetophenone (2), and p-nitro-alpha-bromoacetophenone (3) by whole cells of the marine fungus Aspergillus sydowii Ce19 have been investigated. Fungal cells that had been grown in artificial sea water medium containing a high concentration of chloride ions (1.20 M) catalysed the biotransformation of 1 to 2-bromo-1-phenylethanol 4 (56%), together with the alpha-chlorohydrin 7 (9%), 1-phenylethan-1,2-diol 9 (26%), acetophenone 10 (4%) and phenylethanol 11 (5%) identified by GC-MS analysis. In addition, it was observed that the enzymatic reaction was accompanied by the spontaneous debromination of 1 to yield alpha-chloroacetophenone 5 (9%) and alpha-hydroxyacetophenone 6 (18%) identified by GC-FID analysis. When 2 and 3 were employed as substrates, various biotransformation products were detected but the formation of halohydrins was not observed. It is concluded that marine fungus A. sydowii Ce19 presents potential for the biotransformations of bromoacetophenone derivatives.
Resumo:
The asymmetric reduction of 2-chloro-1-phenylethanone (1) by seven strains of marine fungi was evaluated and afforded (S)-(-)-2-chloro-1-phenylethanol with, in the best case, an enantiomeric excess of 50% and an isolated yield of 60%. The ability of marine fungi to catalyse the reduction was directly dependent on growth in artificial sea water-based medium containing a high concentration of Cl(-) (1.2 M). When fungi were grown in the absence of artificial sea water, no reduction of 1 by whole cells was observed. The biocatalytic reduction of 1 was more efficient at neutral rather than acidic pH values and in the absence of glucose as co-substrate.
Resumo:
The present work demonstrates the successful application of automated biocompatible in-tube solid-phase microextraction coupled with liquid chromatography (in-tube SPME/LC) for determination of interferon alpha(2a) (IFN alpha(2a)) in plasma samples for therapeutic drug monitoring. A restricted access material (RAM, protein-coated silica) was employed for preparation of a lab-made biocompatible in-tube SPME capillary that enables the direct injection of biological fluids as well as the simultaneous exclusion of macromolecules by chemical diffusion barrier and drug pre-concentration. The in-tube SPME variables, such as sample volume, draw/eject volume, number of draw-eject cycles, and desorption mode were optimized, to improve the sensitivity of the proposed method. The IFN alpha(2a) analyses in plasma sample were carried out within 25 min (sample preparation and LC analyses). The response of the proposed method was linear over a dynamic range, from 0.06 to 3.0 MIU mL(-1), with correlation coefficient equal to 0.998. The interday precision of the method presented coefficient of variation lower than 8%. The proposed automated method has adequate analytical sensitivity and selectivity for determination of IFN alpha(2a) in plasma samples for therapeutic drug monitoring. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Xylella fastidiosa is a xylem-restricted plant pathogen that causes a range of diseases in several and important crops. Through comparative genomic sequence analysis many genes were identified and, among them, several potentially involved in plant-pathogen interaction. The experimental determination of the primary sequence of some markedly expressed proteins for X fastidiosa and the comparison with the nucleic acids sequence of genome identified one of them as being SCJ21.16 (XFa0032) gene product. The comparative analysis of this protein against SWISSPROT database, in special, resulted in similarity with a-hydroxynitrile lyase enzyme (HNL) from Arabidopsis thaliana, causing interest for being one of the most abundant proteins both in the whole cell extract as well as in the extracellular protein fraction. It is known that HNL enzyme are involved in a process termed ""cyanogenesis"", which catalyzes the dissociation of alpha-hydroxinitrile into carbonyle and HCN when plant tissue is damaged. Although the complete genome sequences of X.fastidiosa are available and the cyanogenesis process is well known, the biological role of this protein in this organism is not yet functionally characterized. In this study we presented the cloning, expression, characterization of recombinant HNL from X fastidiosa, and its probable function in the cellular metabolism. The successful cloning and heterologous expression in Escherichia coli resulted in a satisfactory amount of the recombinant HNL expressed in a soluble, and active form giving convenient access to pure enzyme for biochemical and structural studies. Finally, our results confirmed that the product of the gene XFa0032 can be positively assigned as FAD-independent HNLs. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this work was to evaluate the effect of the storage time on the thermal properties of triethylene glycol dimethacrylate/2,2-bis[4-(2-hydroxy-3-methacryloxy-prop-1-oxy)-phenyl]propane bisphenyl-alpha-glycidyl ether dimethacrylate (TB) copolymers used in formulations of dental resins after photopolymerization. The TB copolymers were prepared by photopolymerization with an Ultrablue IS light-emitting diode, stored in the dark for 160 days at 37 degrees C, and characterized with differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and Fourier transform infrared spectroscopy with attenuated total reflection. DSC curves indicated the presence of an exothermic peak, confirming that the reaction was not completed during the photopolymerization process. This exothermic peak became smaller as a function of the storage time and was shifted at higher temperatures. In DMA studies, a plot of the loss tangent versus the temperature initially showed the presence of two well-defined peaks. The presence of both peaks confirmed the presence of residual monomers that were not converted during the photopolymerization process. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 112: 679-684, 2009