51 resultados para viscosity-modifying agent
Resumo:
Planning to reach a goal is an essential capability for rational agents. In general, a goal specifies a condition to be achieved at the end of the plan execution. In this article, we introduce nondeterministic planning for extended reachability goals (i.e., goals that also specify a condition to be preserved during the plan execution). We show that, when this kind of goal is considered, the temporal logic CTL turns out to be inadequate to formalize plan synthesis and plan validation algorithms. This is mainly due to the fact that the CTL`s semantics cannot discern among the various actions that produce state transitions. To overcome this limitation, we propose a new temporal logic called alpha-CTL. Then, based on this new logic, we implement a planner capable of synthesizing reliable plans for extended reachability goals, as a side effect of model checking.
Resumo:
The viscosity of ionic liquids based on quaternary ammonium cations is reduced when one of the alkyl chains is replaced by an alkoxy chain (Zhou et al. Chem. Eur. J. 2005, 11, 752.). A microscopic picture of the role played by the ether function in decreasing the viscosity of quaternary ammonium ionic liquids is provided here by molecular dynamics (MD) simulations. A model for the ionic liquid N-ethyl-N,N-dimethyl-N-(2-methoxyethyl)ammonium bis(trifluoromethanesulfonyl)imide, MOENM(2)E TFSI, is compared to the tetraalky-lammonium counterpart. The alkoxy derivative has lower viscosity, higher ionic diffusion coefficients, and higher conductivity than the tetraalkyl system at the same density and temperature. A clear signature of the ether function on the liquid structure is observed in cation-cation correlations, but not in anion-anion or anion-cation correlations. In both the alkyl and the alkoxy ionic liquids, there is aggregation of long chains of neighboring cations within micelle-like structures. The MD simulations indicate that the less effective assembly between the more flexible alkoxy chains, in comparison to alkyl chains, is the structural reason for higher ionic mobility in MOENM(2)E TFSI.
Resumo:
The effect of CaCl(2), Ca(NO(3))(2), CaSO(4), CaCO(3) and Ca(3)(PO(4))(2) on the flow behavior of xanthan gum solutions was investigated. Regardless the concentration and type of calcium salt used, xanthan solutions presented pseudoplastic behavior. The soluble salts (CaCl(2) and Ca(NO(3))(2)) induced the disordered state in the xanthan chains at concentration of 1.0 g/L or 10 g/L, decreasing the flow consistency index (K) values. At 100 g/L soluble salts K values were similar to those found for pure xanthan solutions, whereas at the same concentration of insoluble particles the K values increased 20%. The adsorption of xanthan gum onto Si/SiO(2) surfaces in the presence of calcium salts was investigated by ellipsometry and atomic force microscopy (AFM). The adsorbed layer of xanthan onto Si/SiO(2) consisted of two regions: (i) a thin acid resistant sublayer, where xanthan chains were like highly entangled fibers and (ii) a thick upperlayer, whose morphology was calcium salt dependent. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Several colorimetric and chromatographic methods have been used for the identification and quantification of methyldopa (MA) in pharmaceutical formulations and clinical samples. However, these methods are time- and reagent-consuming, which stimulated our efforts to develop a simple, fast, and low-cost alternative method. We carried out an electroanalytical method for the determination of MA in pharmaceutical formulations using the crude enzymatic extract of laccase from Pycnoporus sanguineus as oxidizing agent. This method is based on the biochemical oxidation of MA by laccase (LAC), both in solution, followed by electrochemical reduction on glassy carbon electrode surface. This method was employed for the determination of MA in pure and pharmaceutical formulations and compared with the results obtained using the official method. A wide linear curve from 23 x 10(-5) to 1 x 10(-4) mol L(-1) was found with a detection limit calculated from 43 x 10(-6) mol L(-1).
Resumo:
In this work cassava bagasse, a by-product of cassava starch industrialization was investigated as a new raw material to extract cellulose whiskers. This by-product is basically constituted of cellulose fibers (17.5 wt%) and residual starch (82 wt%). Therefore, this residue contains both natural fibers and a considerable quantity of starch and this composition suggests the possibility of using cassava bagasse to prepare both starch nanocrystals and cellulose whiskers. In this way, the preparation of cellulose whiskers was investigated employing conditions of sulfuric acid hydrolysis treatment found in the literature. The ensuing materials were characterized by transmission electron microscopy (TEM) and X-ray diffraction experiments. The results showed that high aspect ratio cellulose whiskers were successfully obtained. The reinforcing capability of cellulose whiskers extracted from cassava bagasse was investigated using natural rubber as matrix. High mechanical properties were observed from dynamic mechanical analysis. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The (bio)degradation of polyolefins can be accelerated by modifying the level of crystallinity or by incorporation of carbonyl groups by adding pro-oxidants to masterbatches or through exposure to ultraviolet irradiation. In this work we sought to improve the degradation of PP by adding cobalt, calcium or magnesium stearate to Ecoflex(R), PP or Ecoflex(R)/PP blends. The effect of the pro-oxidants on biodegradability was assessed by examining the mechanical properties and fluidity of the polymers. PP had higher values for tensile strength at break and Young`s modulus than Ecoflex(R), and the latter had little influence on the properties of PP in Ecoflex(R)/PP blends. However, the presence of pro-oxidants (except for calcium) reduced these properties. All of the pro-oxidants enhanced the fluidity of PP, a phenomenon that facilitated polymer degradation at high temperatures. (C) 2009 Elsevier Ltd. All rights reserved.