53 resultados para tree patches


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fire management ran increase the biomass of some plant species at fire breaks in reserves of the Cerrado. For example, numerous and large patches of monkey-nuts (Anacardium humile, Anacardiaceae) provide abundant food resources for wildlife in the lower strata of savanna woodlands managed by fire. The objective of this study was to examine the exploitation of A. humile patches by birds in managed savanna woodlands (fire breaks) at Emas National Park, southwest Brazil. The relationship between flock size and the size of Anacardium patches were also investigated. Fire breaks were sampled in September and October 2006, when fruits and flowers were abundant. Ara ararauna was often recorded exploiting resources of Anacardium patches. This species and other psittacids (Amazona aestiva, Alipiopsittaca xanthops, and Diopsittaca nobilis) consumed seeds usually on the ground around fruiting patches. Members of Aratinga aurea flocks and Ramphastos toco consumed pseudo-fruits. Larger flocks detected were those of A. aurea and A. ararauna. Groups of A. ararauna that exploited larger patches tended to be larger than flocks that exploited smaller patches. This study suggests that intra- and interspecific interactions and characteristics of Anacardium patches and of the surrounding vegetation are involved in the feeding ecology of birds in the lower stratum of managed woodlands. Fruiting Anacardium patches attract numerous frugivorous birds to fire breaks at Emas National Park. Further research is needed to a better understanding of the influence of fire management on birds in the Cerrado. Accepted 31 July 2009.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hundreds of tropical plant species house ant colonies in specialized chambers called domatia. When, in 1873, Richard Spruce likened plant-ants to fleas and asserted that domatia are ant-created galls, he incited a debate that lasted almost a century. Although we now know that domatia are not galls and that most ant-plant interactions are mutualisms and not parasitisms, we revisit Spruce`s suggestion that ants can gall in light of our observations of the plant-ant Myrmelachista schumanni, which creates clearings in the Amazonian rain forest called ""supay-chakras,"" or ""devil`s gardens."" We observed swollen scars on the trunks of nonmyrmecophytic canopy trees surrounding supay-chakras, and within these swellings, we found networks of cavities inhabited by M. schumanni. Here, we summarize the evidence supporting the hypothesis that M. schumanni ants make these galls, and we hypothesize that the adaptive benefit of galling is to increase the amount of nesting space available to M. schumanni colonies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Various popular machine learning techniques, like support vector machines, are originally conceived for the solution of two-class (binary) classification problems. However, a large number of real problems present more than two classes. A common approach to generalize binary learning techniques to solve problems with more than two classes, also known as multiclass classification problems, consists of hierarchically decomposing the multiclass problem into multiple binary sub-problems, whose outputs are combined to define the predicted class. This strategy results in a tree of binary classifiers, where each internal node corresponds to a binary classifier distinguishing two groups of classes and the leaf nodes correspond to the problem classes. This paper investigates how measures of the separability between classes can be employed in the construction of binary-tree-based multiclass classifiers, adapting the decompositions performed to each particular multiclass problem. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we introduce a new hierarchical surface decomposition method for multiscale analysis of surface meshes. In contrast to other multiresolution methods, our approach relies on spectral properties of the surface to build a binary hierarchical decomposition. Namely, we utilize the first nontrivial eigenfunction of the Laplace-Beltrami operator to recursively decompose the surface. For this reason we coin our surface decomposition the Fiedler tree. Using the Fiedler tree ensures a number of attractive properties, including: mesh-independent decomposition, well-formed and nearly equi-areal surface patches, and noise robustness. We show how the evenly distributed patches can be exploited for generating multiresolution high quality uniform meshes. Additionally, our decomposition permits a natural means for carrying out wavelet methods, resulting in an intuitive method for producing feature-sensitive meshes at multiple scales. Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes and compares three heuristics for a variant of the Steiner tree problem with revenues, which includes budget and hop constraints. First, a greedy method which obtains good approximations in short computational times is proposed. This initial solution is then improved by means of a destroy-and-repair method or a tabu search algorithm. Computational results compare the three methods in terms of accuracy and speed. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural stability of a peroxidase, a dimeric protein from royal palm tree (Roystonea regia) leaves, has been characterized by high-sensitivity differential scanning calorimetry, circular dichroism, steady-state tryptophan fluorescence and analytical ultracentifugation under different solvent conditions. It is shown that the thermal and chemical (using guanidine hydrochloride (Gdn-HCl)) folding/unfolding of royal palm tree peroxidase (RPTP) at pH 7 is a reversible process involving a highly cooperative transition between the folded dimer and unfolded monomers, with a free stabilization energy of about 23 kcal per mol of monomer at 25 degrees C. The structural stability of RPTP is pH-dependent. At pH 3, where ion pairs have disappeared due to protonation, the thermally induced denaturation of RPTP is irreversible and strongly dependent upon the scan rate, suggesting that this process is under kinetic control. Moreover, thermally induced transitions at this pH value are dependent on the protein concentration, allowing it to be concluded that in solution RPTP behaves as dimer, which undergoes thermal denaturation coupled with dissociation. Analysis of the kinetic parameters of RPTP denaturation at pH 3 was accomplished on the basis of the simple kinetic scheme N ->(k) D, where k is a first-order kinetic constant that changes with temperature, as given by the Arrhenius equation; N is the native state, and D is the denatured state, and thermodynamic information was obtained by extrapolation of the kinetic transition parameters to an infinite heating rate. Obtained in this way, the value of RPTP stability at 25 degrees C is ca. 8 kcal per mole of monomer lower than at pH 7. In all probability, this quantity reflects the contribution of ion pair interactions to the structural stability of RPTP. From a comparison of the stability of RPTP with other plant peroxidases it is proposed that one of the main factors responsible for the unusually high stability of RPTP which enhances its potential use for biotechnological purposes, is its dimerization. (c) 2008 Elsevier Masson SAS. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Royal palm tree peroxidase (RPTP) is a very stable enzyme in regards to acidity, temperature, H(2)O(2), and organic solvents. Thus, RPTP is a promising candidate for developing H(2)O(2)-sensitive biosensors for diverse applications in industry and analytical chemistry. RPTP belongs to the family of class III secretory plant peroxidases, which include horseradish peroxidase isozyme C, soybean and peanut peroxidases. Here we report the X-ray structure of native RPTP isolated from royal palm tree (Roystonea regia) refined to a resolution of 1.85 angstrom. RPTP has the same overall folding pattern of the plant peroxidase superfamily, and it contains one heme group and two calcium-binding sites in similar locations. The three-dimensional structure of RPTP was solved for a hydroperoxide complex state, and it revealed a bound 2-(N-morpholino) ethanesulfonic acid molecule (MES) positioned at a putative substrate-binding secondary site. Nine N-glycosylation sites are clearly defined in the RPTP electron-density maps, revealing for the first time conformations of the glycan chains of this highly glycosylated enzyme. Furthermore, statistical coupling analysis (SCA) of the plant peroxidase superfamily was performed. This sequence-based method identified a set of evolutionarily conserved sites that mapped to regions surrounding the heme prosthetic group. The SCA matrix also predicted a set of energetically coupled residues that are involved in the maintenance of the structural folding of plant peroxidases. The combination of crystallographic data and SCA analysis provides information about the key structural elements that could contribute to explaining the unique stability of RPTP. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Let M = (V, E, A) be a mixed graph with vertex set V, edge set E and arc set A. A cycle cover of M is a family C = {C(1), ... , C(k)} of cycles of M such that each edge/arc of M belongs to at least one cycle in C. The weight of C is Sigma(k)(i=1) vertical bar C(i)vertical bar. The minimum cycle cover problem is the following: given a strongly connected mixed graph M without bridges, find a cycle cover of M with weight as small as possible. The Chinese postman problem is: given a strongly connected mixed graph M, find a minimum length closed walk using all edges and arcs of M. These problems are NP-hard. We show that they can be solved in polynomial time if M has bounded tree-width. (C) 2008 Elsevier B.V. All rights reserved.