83 resultados para pitch-scaling
Resumo:
With each directed acyclic graph (this includes some D-dimensional lattices) one can associate some Abelian algebras that we call directed Abelian algebras (DAAs). On each site of the graph one attaches a generator of the algebra. These algebras depend on several parameters and are semisimple. Using any DAA, one can define a family of Hamiltonians which give the continuous time evolution of a stochastic process. The calculation of the spectra and ground-state wave functions (stationary state probability distributions) is an easy algebraic exercise. If one considers D-dimensional lattices and chooses Hamiltonians linear in the generators, in finite-size scaling the Hamiltonian spectrum is gapless with a critical dynamic exponent z=D. One possible application of the DAA is to sandpile models. In the paper we present this application, considering one- and two-dimensional lattices. In the one-dimensional case, when the DAA conserves the number of particles, the avalanches belong to the random walker universality class (critical exponent sigma(tau)=3/2). We study the local density of particles inside large avalanches, showing a depletion of particles at the source of the avalanche and an enrichment at its end. In two dimensions we did extensive Monte-Carlo simulations and found sigma(tau)=1.780 +/- 0.005.
Resumo:
Bounds on the exchange-correlation energy of many-electron systems are derived and tested. By using universal scaling properties of the electron-electron interaction, we obtain the exponent of the bounds in three, two, one, and quasione dimensions. From the properties of the electron gas in the dilute regime, the tightest estimate to date is given for the numerical prefactor of the bound, which is crucial in practical applications. Numerical tests on various low-dimensional systems are in line with the bounds obtained and give evidence of an interesting dimensional crossover between two and one dimensions.
Resumo:
Measurement of the transmitted intensity from a coherent monomode light source through a series of subwavelength slit arrays in Ag films, with varying array pitch and number of slits, demonstrates enhancement (suppression) by factors of as much as 6 (9) when normalized to the transmission efficiency of an isolated slit. Pronounced minima in the transmitted intensity are observed at array pitches corresponding to lambda(SPP), 2 lambda(SPP), and 3 lambda(SPP), where lambda(SPP) is the wavelength of the surface plasmon polariton (SPP). The position of these minima arises from destructive interference between incident propagating waves and pi-phase-shifted SPP waves. Increasing the number of slits to four or more does not increase appreciably the per-slit transmission intensity. A simple interference model fits well the measured transmitted intensity profile.
Resumo:
The dynamical discrete web (DyDW), introduced in the recent work of Howitt and Warren, is a system of coalescing simple symmetric one-dimensional random walks which evolve in an extra continuous dynamical time parameter tau. The evolution is by independent updating of the underlying Bernoulli variables indexed by discrete space-time that define the discrete web at any fixed tau. In this paper, we study the existence of exceptional (random) values of tau where the paths of the web do not behave like usual random walks and the Hausdorff dimension of the set of such exceptional tau. Our results are motivated by those about exceptional times for dynamical percolation in high dimension by Haggstrom, Peres and Steif, and in dimension two by Schramm and Steif. The exceptional behavior of the walks in the DyDW is rather different from the situation for the dynamical random walks of Benjamini, Haggstrom, Peres and Steif. For example, we prove that the walk from the origin S(0)(tau) violates the law of the iterated logarithm (LIL) on a set of tau of Hausdorff dimension one. We also discuss how these and other results should extend to the dynamical Brownian web, the natural scaling limit of the DyDW. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Given the polarity dependent effects of transcranial direct current stimulation (tDCS) in facilitating or inhibiting neuronal processing, and tDCS effects on pitch perception, we tested the effects of tDCS on temporal aspects of auditory processing. We aimed to change baseline activity of the auditory cortex using tDCS as to modulate temporal aspects of auditory processing in healthy subjects without hearing impairment. Eleven subjects received 2mA bilateral anodal, cathodal and sham tDCS over auditory cortex in a randomized and counterbalanced order. Subjects were evaluated by the Random Gap Detection Test (RGDT), a test measuring temporal processing abilities in the auditory domain, before and during the stimulation. Statistical analysis revealed a significant interaction effect of time vs. tDCS condition for 4000 Hz and for clicks. Post-hoc tests showed significant differences according to stimulation polarity on RGDT performance: anodal improved 22.5% and cathodal decreased 54.5% subjects' performance, as compared to baseline. For clicks, anodal also increased performance in 29.4% when compared to baseline. tDCS presented polarity-dependent effects on the activity of the auditory cortex, which results in a positive or negative impact in a temporal resolution task performance. These results encourage further studies exploring tDCS in central auditory processing disorders.
Resumo:
Extensive ab initio calculations using a complete active space second-order perturbation theory wavefunction, including scalar and spin-orbit relativistic effects with a quadruple-zeta quality basis set were used to construct an analytical potential energy surface (PES) of the ground state of the [H, O, I] system. A total of 5344 points were fit to a three-dimensional function of the internuclear distances, with a global root-mean-square error of 1.26 kcal mol(-1). The resulting PES describes accurately the main features of this system: the HOI and HIO isomers, the transition state between them, and all dissociation asymptotes. After a small adjustment, using a scaling factor on the internal coordinates of HOI, the frequencies calculated in this work agree with the experimental data available within 10 cm(-1). (C) 2011 American Institute of Physics. [doi: 10.1063/1.3615545]
Resumo:
Biogeochemistry is hosting this special thematic issue devoted to studies of land-water interactions, as part of the Large-scale Biosphere-Atmosphere Experiment in Amaznia (LBA). This compilation of papers covers a broad range of topics with a common theme of coupling land and water processes, across pristine and impacted systems. Findings highlighted that hydrologic flowpaths are clearly important across basin size and structure in determining how water and solutes reach streams. Land-use changes have pronounced impacts on flowpaths, and subsequently, on stream chemistry, from small streams to large rivers. Carbon is produced and transformed across a broad array of fluvial environments and wetlands. Surface waters are not only driven by, but provide feedback to, the atmosphere.
Resumo:
A recent estimate of CO(2) outgassing from Amazonian wetlands suggests that an order of magnitude more CO(2) leaves rivers through gas exchange with the atmosphere than is exported to the ocean as organic plus inorganic carbon. However, the contribution of smaller rivers is still poorly understood, mainly because of limitations in mapping their spatial extent. Considering that the largest extension of the Amazon River network is composed of small rivers, the authors` objective was to elucidate their role in air-water CO(2) exchange by developing a geographic information system ( GIS)- based model to calculate the surface area covered by rivers with channels less than 100 m wide, combined with estimated CO(2) outgassing rates at the Ji-Parana River basin, in the western Amazon. Estimated CO(2) outgassing was the main carbon export pathway for this river basin, totaling 289 Gg C yr(-1), about 2.4 times the amount of carbon exported as dissolved inorganic carbon ( 121 Gg C yr(-1)) and 1.6 times the dissolved organic carbon export ( 185 Gg C yr(-1)). The relationships established here between drainage area and channel width provide a new model for determining small river surface area, allowing regional extrapolations of air - water gas exchange. Applying this model to the entire Amazon River network of channels less than 100 m wide ( third to fifth order), the authors calculate that the surface area of small rivers is 0.3 +/- 0.05 million km(2), and it is potentially evading to the atmosphere 170 +/- 42 Tg C yr(-1) as CO(2). Therefore, these ecosystems play an important role in the regional carbon balance.
Resumo:
The search for more realistic modeling of financial time series reveals several stylized facts of real markets. In this work we focus on the multifractal properties found in price and index signals. Although the usual minority game (MG) models do not exhibit multifractality, we study here one of its variants that does. We show that the nonsynchronous MG models in the nonergodic phase is multifractal and in this sense, together with other stylized facts, constitute a better modeling tool. Using the structure function (SF) approach we detected the stationary and the scaling range of the time series generated by the MG model and, from the linear (non-linear) behavior of the SF we identified the fractal (multifractal) regimes. Finally, using the wavelet transform modulus maxima (WTMM) technique we obtained its multifractal spectrum width for different dynamical regimes. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The Random Parameter model was proposed to explain the structure of the covariance matrix in problems where most, but not all, of the eigenvalues of the covariance matrix can be explained by Random Matrix Theory. In this article, we explore the scaling properties of the model, as observed in the multifractal structure of the simulated time series. We use the Wavelet Transform Modulus Maxima technique to obtain the multifractal spectrum dependence with the parameters of the model. The model shows a scaling structure compatible with the stylized facts for a reasonable choice of the parameter values. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A rapid method for classification of mineral waters is proposed. The discrimination power was evaluated by a novel combination of chemometric data analysis and qualitative multi-elemental fingerprints of mineral water samples acquired from different regions of the Brazilian territory. The classification of mineral waters was assessed using only the wavelength emission intensities obtained by inductively coupled plasma optical emission spectrometry (ICP OES), monitoring different lines of Al, B, Ba, Ca, Cl, Cu, Co, Cr, Fe, K, Mg, Mn, Na, Ni, P, Pb, S, Sb, Si, Sr, Ti, V, and Zn, and Be, Dy, Gd, In, La, Sc and Y as internal standards. Data acquisition was done under robust (RC) and non-robust (NRC) conditions. Also, the combination of signal intensities of two or more emission lines for each element were evaluated instead of the individual lines. The performance of two classification-k-nearest neighbor (kNN) and soft independent modeling of class analogy (SIMCA)-and preprocessing algorithms, autoscaling and Pareto scaling, were evaluated for the ability to differentiate between the various samples in each approach tested (combination of robust or non-robust conditions with use of individual lines or sum of the intensities of emission lines). It was shown that qualitative ICP OES fingerprinting in combination with multivariate analysis is a promising analytical tool that has potential to become a recognized procedure for rapid authenticity and adulteration testing of mineral water samples or other material whose physicochemical properties (or origin) are directly related to mineral content.
Resumo:
Converting aeroelastic vibrations into electricity for low power generation has received growing attention over the past few years. In addition to potential applications for aerospace structures, the goal is to develop alternative and scalable configurations for wind energy harvesting to use in wireless electronic systems. This paper presents modeling and experiments of aeroelastic energy harvesting using piezoelectric transduction with a focus on exploiting combined nonlinearities. An airfoil with plunge and pitch degrees of freedom (DOF) is investigated. Piezoelectric coupling is introduced to the plunge DOF while nonlinearities are introduced through the pitch DOF. A state-space model is presented and employed for the simulations of the piezoaeroelastic generator. A two-state approximation to Theodorsen aerodynamics is used in order to determine the unsteady aerodynamic loads. Three case studies are presented. First the interaction between piezoelectric power generation and linear aeroelastic behavior of a typical section is investigated for a set of resistive loads. Model predictions are compared to experimental data obtained from the wind tunnel tests at the flutter boundary. In the second case study, free play nonlinearity is added to the pitch DOF and it is shown that nonlinear limit-cycle oscillations can be obtained not only above but also below the linear flutter speed. The experimental results are successfully predicted by the model simulations. Finally, the combination of cubic hardening stiffness and free play nonlinearities is considered in the pitch DOF. The nonlinear piezoaeroelastic response is investigated for different values of the nonlinear-to-linear stiffness ratio. The free play nonlinearity reduces the cut-in speed while the hardening stiffness helps in obtaining persistent oscillations of acceptable amplitude over a wider range of airflow speeds. Such nonlinearities can be introduced to aeroelastic energy harvesters (exploiting piezoelectric or other transduction mechanisms) for performance enhancement.
Resumo:
An investigation of nucleate boiling on a vertical array of horizontal plain tubes is presented in this paper. Experiments were performed with refrigerant RI 23 at reduced pressures varying from 0.022 to 0.64, tube pitch to diameter ratios of 1.32, 1.53 and 2.00, and heat fluxes from 0.5 to 40 kW/m(2). Brass tubes with external diameters of 19.05 mm and average roughness of 0.12 mu m were used in the experiments. The effect of the tube spacing on the local heat transfer coefficient along the tube array was negligible within the present range of experimental conditions. For partial nucleate boiling, characterized by low heat fluxes, and low reduced pressures, the tube positioning shows a remarkable effect on the heat transfer coefficient. Based on these data, a general correlation for the prediction of the nucleate boiling heat transfer coefficient on a vertical array of horizontal tubes under flooded conditions was proposed. According to this correlation, the ratio between the heat transfer coefficients of a given tube and the lowest tube in the array depends only on the tube row number, the reduced pressure and the heat flux. By using the proposed correlation, most of the experimental heat transfer coefficients obtained in the present study were predicted within +/- 15%. The new correlation compares reasonably well with independent data from the literature. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
The volumetric reconstruction technique presented in this paper employs a two-camera stereoscopic particle image velocimetry (SPIV) system in order to reconstruct the mean flow behind a fixed cylinder fitted with helical strakes, which are commonly used to suppress vortex-induced vibrations (VIV). The technique is based on the measurement of velocity fields at equivalent adjacent planes that results in pseudo volumetric fields. The main advantage over proper volumetric techniques is the avoidance of additional equipment and complexity. The averaged velocity fields behind the straked cylinders and the geometrical periodicity of the three-start configuration are used to further simplify the reconstruction process. Two straked cylindrical models with the same pitch (p = 10d) and two different heights (h = 0.1 and 0.2d) are tested. The reconstructed flow shows that the strakes introduce in the wake flow a well-defined wavelength of one-third of the pitch. Measurements of hydrodynamic forces, fluctuating velocity, vortex formation length, and vortex shedding frequency show the interdependence of the wake parameters. The vortex formation length is increased by the strakes, which is an important effect for the suppression of vortex-induced vibrations. The results presented complement previous investigations concerning the effectiveness of strakes as VIV suppressors and provide a basis of comparison to numerical simulations.
Resumo:
This work describes the development of an engineering approach based upon a toughness scaling methodology incorporating the effects of weld strength mismatch on crack-tip driving forces. The approach adopts a nondimensional Weibull stress, (sigma) over bar (w), as a the near-tip driving force to correlate cleavage fracture across cracked weld configurations with different mismatch conditions even though the loading parameter (measured by J) may vary widely due to mismatch and constraint variations. Application of the procedure to predict the failure strain for an overmatch girth weld made of an API X80 pipeline steel demonstrates the effectiveness of the micromechanics approach. Overall, the results lend strong support to use a Weibull stress based procedure in defect assessments of structural welds.