67 resultados para magnetic variable measurements
Resumo:
The influence of different M(2+) cations on the effective magnetic anisotropy of systems composed of MFe(2)O(4) (M Fe, Co and Mn) nanoparticles was investigated. Samples were prepared by the high-temperature (538 K) solution phase reaction of Fe (acac) 3, Co (acac) 2 and Mn (acac) 2 with 1,2 octanodiol in the presence of oleic acid and oleylamine. The final particles are coated by an organic layer of oleic acid that prevents agglomeration. Transmission electron microscopy (TEM) images show that particles present near spherical form and a narrow grain size distribution, with mean diameters in the range of 4.5 - 7.6 nm. Powder samples were analyzed by ac susceptibility and Mossbauer measurements, and K(eff) for all samples was evaluated using both techniques, showing a strong dependence on the nature of the divalent cation. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This work involved an investigation to ascertain how the substitution of nickel ions for zinc ions affects the structural, morphological and magnetic properties of NiFe(2)O(4) ferrite samples. Ni(1-x)Zn(x)Fe(2)O(4) (x = 0.0, 0.3 0.5, 0.7) powders were prepared by combustion reaction and characterized structurally by X-ray diffraction. The specific surface area of the powders was determined by the nitrogen adsorption method (BET). Magnetization measurements were taken using an alternative gradient magnetometer (AGM), which revealed that the powders prepared by combustion reaction resulted in nanosized particles with a particle size of 18-27 nm. The crystallite size and lattice parameter increased as the concentration of Zn increased. Moreover, augmenting the Zn content in the NiFe(2)O(4) ferrite increased the saturation magnetization and coercive field. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The magnetic behavior of polycrystalline yttrium orthoferrite was studied from the experimental and theoretical points of view. Magnetization measurements up to 170 kOe were carried out on a single-phase YFeO3 sample synthesized from heterobimetallic alkoxides. The complex interplay between weak-ferromagnetic and antiferromagnetic interactions, observed in the experimental M(H) curves, was successfully simulated by locally minimizing the magnetic energy of two interacting Fe sublattices. The resulting values of exchange field (H-E = 5590 kOe), anisotropy field (H-A = 0.5 kOe) and Dzyaloshinsky-Moriya antisymmetric field (H-D = 149 kOe) are in good agreement with previous reports on this system. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Measurements of the magnetic susceptibility of the frustrated pyrochlore magnet Gd(2)Sn(2)O(7) have been performed at temperatures below T = 5 K and in magnetic fields up to H = 12 T. The phase boundaries determined from these measurements are mapped out in an H-T phase diagram. In this gadolinium compound, where the crystal-field splitting is small and the exchange and dipolar energy are comparable, the Zeeman energy overcomes these competing energies, resulting in at least four magnetic phase transitions below 1 K. These data are compared against those for Gd(2)Ti(2)O(7) and will, we hope, stimulate further studies.
Resumo:
The title radical (F4BlmNN) is a stable nitronylnitroxide that forms hydrogen-bonded NH center dot center dot center dot ON chains in the solid state. The chains assemble the F4BlmNN molecules to form stacked contacts between the radical groups, in a geometry that is expected to exhibit ferromagnetic (FM) exchange based on spin polarization (SP) models. The experimental magnetic susceptibility of F4BlmNN confirms the expectation, showing 1-D Heisenberg chain FM exchange behavior over 1.8-300 K with an intrachain exchange constant Of J(chain)/k = +22 K. At lower temperatures, ac magnetic susceptibility and variable field heat capacity measurements show that F4BlmNN acts as a quasi-1-D ferromagnet. The dominant ferromagnetic exchange interaction is attributable to overlap between spin orbitals of molecules within the hydrogen-bonded chains, consistent with the SP model expectations. The chains appear to be antiferromagnetically exchange coupled, giving cusps in the ac susceptibility and zero field heat capacity at lower temperatures. The results indicate that the sample orders magnetically at about 0.7 K. The magnetic heat capacity ordering cusp shifts to lower temperatures as external magnetic field increases, consistent with forming a bulk antiferromagnetic phase below a Neel temperature of T-N(0) = 0.72 K, with a critical field of H-c approximate to 1800 Oe. The interchain exchange is estimated to be zJ/k congruent to (-)0.1 K.
Resumo:
Measurements of X-ray diffraction, electrical resistivity, and magnetization are reported across the Jahn-Teller phase transition in LaMnO(3). Using a thermodynamic equation, we obtained the pressure derivative of the critical temperature (T(JT)), dT(JT)/dP = -28.3 K GPa(-1). This approach also reveals that 5.7(3)J(mol K)(-1) comes from the volume change and 0.8(2)J(mol K)(-1) from the magnetic exchange interaction change across the phase transition. Around T(JT), a robust increase in the electrical conductivity takes place and the electronic entropy change, which is assumed to be negligible for the majority of electronic systems, was found to be 1.8(3)J(mol K)(-1).
Resumo:
Magnetic properties of nanocrystalline NiFe(2)O(4) spinel mechanically processed for 350 h have been studied using temperature dependent from both zero-field and in-field (57)Fe Mossbauer spectrometry and magnetization measurements. The hyperfine structure allows us to distinguish two main magnetic contributions: one attributed to the crystalline grain core, which has magnetic properties similar to the NiFe(2)O(4) spinel-like structure (n-NiFe(2)O(4)) and the other one due to the disordered grain boundary region, which presents topological and chemical disorder features(d-NiFe(2)O(4)). Mossbauer spectrometry determines a large fraction for the d-NiFe(2)O(4) region(62% of total area) and also suggests a speromagnet-like structure for it. Under applied magnetic field, the n-NiFe(2)O(4) spins are canted with angle dependent on the applied field magnitude. Mossbauer data also show that even under 120 kOe no magnetic saturation is observed for the two magnetic phases. In addition, the hysteresis loops, recorded for scan field of 50 kOe, are shifted in both field and magnetization axes, for temperatures below about 50 K. The hysteresis loop shifts may be due to two main contributions: the exchange bias field at the d-NiFe(2)O(4)/n-NiFe(2)O(4) interfaces and the minor loop effect caused by a high magnetic anisotropy of the d-NiFe(2)O(4) phase. It has also been shown that the spin configuration of the spin-glass like phase is modified by the consecutive field cycles, consequently the n-NiFe(2)O(4)/d-NiFe(2)O(4) magnetic interaction is also affected in this process. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
One pair of reactants, Cu(hfac)(2) = M and the hinge-flexible radical ligand 5-(3-N-tert-butyl-N-aminoxylphenyl)pyrimidine (3PPN = L), yields a diverse set of five coordination complexes: a cyclic loop M(2)L(1) dimer; a 1:1 cocrystal between an M(2)L(2) loop and an ML(2) fragment; a ID chain of M(2)L(2) loops linked by M; two 2D M(3)L(2) networks of (M-L)(n) chains crosslinked by M with different repeat length pitches; a 3D M(3)L(2) network of M(2)L(2) loops cross-linking (M-L)(n)-type chains with connectivity different from those in the 2D networks. Most of the higher dimensional complexes exhibit reversible, temperature-dependent spin-state conversion of high-temperature paramagnetic states to lower magnetic moment states having antiferromagnetic exchange within Cu-ON bonds upon cooling, with accompanying bond contraction. The 3D complex also exhibited antiferromagnetic exchange between Cu(II) ions linked in chains through pyrimidine rings.
Resumo:
The magnetic structures of the title compounds have been studied by neutron diffraction. In contrast to the isomorphous RNi(2)B(2)C compounds, wherein a variety of exotic incommensurate modulated structures has been observed, the magnetic structure of ErCo(2)B(2)C is found to be a collinear antiferromagnet with k = (12, 0, 12) while those of HoCo(2)B(2)C and DyCo(2)B(2)C are observed to be simple ferromagnets. For all studied compounds, the moments are found to be confined within the basal plane and their magnitudes are comparable to the values obtained from the low-temperature isothermal magnetization measurements. The absence of modulated magnetic structures in the RCo(2)B(2)C series (for ErCo(2)B(2)C, verified down to 50 mK) is attributed to the quenching of the Fermi surface nesting features.
Resumo:
An evaluation was made of the influence of calcination temperatures on the structure, morphology and eletromagnetic properties of Ni-Zn ferrite powders. To this end, Ni(0.5)Zn(0.5)Fe(2)O(4) ferrite powders were prepared by combustion reaction and calcined at temperatures of 800, 1000 and 1200 degrees C/2 h. The resulting powders were characterized by XRD, SEM and reflectivity measurements in the frequency bands of 8-12 GHz. The results demonstrated that raising the calcination temperature increased the particle sizes of the powders of all the systems in question, improving the reflectivity of the materials. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The disclosure of magnetic ionic liquids (MILs) as stable dispersions of surface modified gamma-Fe(2)O(3) or CoFe(2)O(4) nanoparticles (NPs) in the 1-n-butyl-3-methylimidazolium tetrafluoroborate (BMIBF(4)) ionic liquid is reported. The magnetic NPs were characterized by X-ray powder diffraction, transmission electron microscopy, and Raman spectroscopy. The surface modified NPs have proved to form stable dispersions in BMIBF(4) in the absence of water and behave like a magnetic ionic liquid. The MILs have been characterized by Raman spectroscopy, magnetic measurements, and DSC. The stability of the magnetic NPs in BMIBF(4) is consistently explained by assuming the formation of a semiorganized protective layer composed of supramolecular aggregates in the form of [(BMI)(2)(BF(4))(3)](-). A superparamagnetic behavior and saturation magnetization of ca. 18 emu/g for a sample containing 30% w/w maghemite NPs/BMIBF(4) have been inferred from static and dynamic magnetic measurements. DSC results have shown that the MIL composed of 30% w/w CoFe(2)O(4) NPs/BMIBF(4) remains a liquid phase down to -84 degrees C.
Resumo:
In this work we use magnetic resonant x-ray diffraction to study the magnetic properties of a 1.5 mu m EuTe film and an EuTe/PbTe superlattice (SL). The samples were grown by molecular beam epitaxy on (111) oriented BaF(2) substrates. The measurements were made at the Eu L(2) absorption edge, taking profit of the resonant enhancement of more than two orders in the magnetically diffracted intensity. At resonance, high counting rates above 11000 cps were obtained for the 1.5 gm EuTe film, allowing to check for the type II antiferromagnetic order of EuTe. An equal population of the three possible in-plane magnetic domains was found. The EuTe/PbTe SL magnetic peak showed a satellite structure, indicating the presence of magnetic correlations among the 5 ML (monolayers) EuTe layers across the 15 ML PbTe non-magnetic spacers. The temperature dependence of the integrated intensities of the film and the SL yielded different Neel temperatures T(N). The lower T(N) for the SL is explained considering the higher influence of the surface atoms, with partial bonds lost.
Resumo:
Magnetic M( T, H, P) and electrical transport.( T, H, P) measurements in a strong spin-lattice-charge coupled La(0.7)Ca(0.3)MnO(3) system have been conducted. The application of H and P leads to the formation of different magnetic domain structures in the vicinity and below the polaronic-to-ferromagnetic transition temperature. The charge mobility is more sensitive to the variation of the spatial wave function overlap between Mn(3+) eg and O(2-) 2p orbitals due to the applied compacting pressure rather than the relative spin orientation between neighbouring Mn ions when the magnetic field is applied. In spite of the presence of different magnetic domain structures due to the sample history, the effect of magnetic field and pressure is less pronounced at lower temperatures on electrical transport properties.
Resumo:
This work reports on magnetic measurements of the quasi-two-dimensional (quasi-2D) system Zn(1-x)Mn(x)In(2)Se(4), with 0.01 <= x <= 1.00. For x > 0.67, the quasi-2D system seems to develop a spin-glass behaviour. Evidence of a true phase transition phenomenon is provided by the steep increase of the nonlinear susceptibility chi(nl) when approaching T(C) from above. The static scaling of chi(nl) data yields critical exponents delta = 4.0 +/- 0.2, phi = 4.37 +/- 0.17 and TC = 3.4 +/- 0.1 K for the sample with x = 1.00 and similar values for the sample with x = 0.87. These critical exponents are in good agreement with values reported for other spin-glass systems with short-range interactions.
Resumo:
We report interparticle interactions effects on the magnetic structure of the surface region in Fe(3)O(4) nanoparticles. For that, we have studied a desirable system composed by Fe(3)O(4) nanoparticles with (d) = 9.3 nm and a narrow size distribution. These particles present an interesting morphology constituted by a crystalline core and a broad (similar to 50% vol.) disordered superficial shell. Two samples were prepared with distinct concentrations of the particles: weakly-interacting particles dispersed in a polymer and strongly-dipolar-interacting particles in a powder sample. M(H, T) measurements clearly show that strong dipolar interparticle interaction modifies the magnetic structure of the structurally disordered superficial shell. Consequently, we have observed drastically distinct thermal behaviours of magnetization and susceptibility comparing weakly- and strongly-interacting samples for the temperature range 2 K < T < 300 K. We have also observed a temperature-field dependence of the hysteresis loops of the dispersed sample that is not observed in the hysteresis loops of the powder one.