93 resultados para fermented meat products
Resumo:
The immunogenic properties of cysteine proteases obtained from excretory/secretory products (ES) of Haemonchus contortus were investigated with a fraction purified with a recombinant H. contortus cystatin affinity column. The enrichment of H. contortus ES for cysteine protease was confirmed with substrate SDS-PAGE gels since the cystatin-binding fraction activity was three times higher than total ES, despite representing only 3% of total ES. This activity was inhibited by a specific cysteine protease inhibitor (E64) and by recombinant cystatin. The one-dimensional profile of the cystatin-binding fraction displayed a single band with a molecular mass of 43 kDa. Mass spectrometry showed this to be AC-5, a cathepsin B-like cysteine protease which had not been identified in ES products of H. contortus before. The cystatin binding fraction was tested as an immunogen in lambs which were vaccinated three times (week 0, 2.5 and 5), challenged with 10 000 L3 H. contortus (week 6) before necropsy and compared to unvaccinated challenge controls and another group given total ES (n = 10 per group). The group vaccinated with cystatin-binding proteins showed 36% and 32% mean worm burden and eggs per gram of faeces (EPG) reductions, respectively, compared to the controls but total ES was almost without effect. After challenge the cystatin-binding proteins induced significantly higher local and systemic ES specific IgA and IgG responses.
Resumo:
The aim of the present study was to determine aflatoxin levels in peanut products traded in the Northeast region of Sao Paulo, Brazil. To this end, 240 samples of peanut products traded in the cities of Araras, Leme, Pirassununga and Porto Ferreira were collected from June 2006 to May 2007. The samples were analyzed for aflatoxins (AF) B(1), B(2), G(1) and G(2) by high performance liquid chromatography. Results showed 44.2% samples positive for AF at levels of 0.5 to 103.8 mu g.kg(-1). Nine of the positive samples (3.7% of the analysed samples) had total aflatoxin concentrations (B(1)+B(2)+G(1)+G(2)) higher than the limit established by Brazilian regulations (20 mu g.kg(-1)). Based on the above data, the probable mean daily intake (PDI(M)) of aflatoxins from peanut products in the Northeast region of Sao Paulo was estimated to be 0.23 ng kg b.w. day(-1). Although this PDI(M) value was relatively low, results indicate that aflatoxin contamination of peanut products may be a public health concern in Brazil, when considering the potential exposure of highly susceptible consumers. For example, it should be emphasized that children are potentially exposed to aflatoxins, since they consume large quantities of peanut candies, and these products had the highest number of samples positive for AFB(1).
Resumo:
Isoprene represents the single most important reactive hydrocarbon for atmospheric chemistry in the tropical atmosphere. It plays a central role in global and regional atmospheric chemistry and possible climate feedbacks. Photo-oxidation of primary hydrocarbons (e. g. isoprene) leads to the formation of oxygenated VOCs (OVOCs). The evolution of these intermediates affects the oxidative capacity of the atmosphere (by reacting with OH) and can contribute to secondary aerosol formation, a poorly understood process. An accurate and quantitative understanding of VOC oxidation processes is needed for model simulations of regional air quality and global climate. Based on field measurements conducted during the Amazonian Aerosol Characterization Experiment (AMAZE-08) we show that the production of certain OVOCs (e. g. hydroxyacetone) from isoprene photo-oxidation in the lower atmosphere is significantly underpredicted by standard chemistry schemes. Recently reported fast secondary production could explain 50% of the observed discrepancy with the remaining part possibly produced via a novel primary production channel, which has been proposed theoretically. The observations of OVOCs are also used to test a recently proposed HO(x) recycling mechanism via degradation of isoprene peroxy radicals. If generalized our observations suggest that prompt photochemical formation of OVOCs and other uncertainties in VOC oxidation schemes could result in uncertainties of modelled OH reactivity, potentially explaining a fraction of the missing OH sink over forests which has previously been largely attributed to a missing source of primary biogenic VOCs.
Resumo:
The objectives of this study were to isolate psychrotrophic clostridia from Brazilian vacuum-packed beef cuts (spoiled or not) and to identify the isolates by using 16S rRNA gene sequencing. Anaerobic psychrotrophic microorganisms were also enumerated and samples were collected to verify the incidence of psychrotrophic clostridia in the abattoir environment. Vacuum-packed beef cuts (n = 8 grossly distended and n = 5 non-spoiled) and environmental samples were obtained from a beef packing plant located in the state of Sao Paulo, Brazil. Each sample was divided in three subsamples (exudate, beef surface and beef core) that were analyzed for vegetative forms, total spore-forming, and sulfide reducing spore-forming, both activated by alcohol and heat. Biochemical profiles of the isolates were obtained using API20A, with further identification using 16S rRNA gene sequencing. The growth temperature and the pH range were also assessed. Populations of psychrotrophic anaerobic vegetative microorganisms of up to 10(10) CFU/(g, mL or 100 cm(2)) were found in `blown pack` samples, while in non-spoiled samples populations of 10(5) CFU/(g, CFU/mL or CFU/100cm(2)) was found. Overall, a higher population of total spores and sulfide reducing spores activated by heat in spoiled samples was found. Clostridium gasigenes (n = 10) and C. algidicarnis (n = 2) were identified using 16S rRNA gene sequencing. Among the ten C. gasigenes isolates, six were from spoiled samples (C1, C2 and C9), two were isolated from non-spoiled samples (C4 and C5) and two were isolated from the hide and the abattoir corridor/beef cut conveyor belt. C. algidicarnis was recovered from spoiled beef packs (C2). Although some samples (C3, C7, C10 and C14) presented signs of `blown pack` spoilage, Clostridium was not recovered. C. algidicarnis (n = 1) and C. gasigenes (n = 9) isolates have shown a psychrotrophic behavior, grew in the range 6.2-8.2. This is the first report on the isolation of psychrotrophic Clostridium (C. gasigenes and C. algidicarnis) in Brazil. This study shows that psychrotrophic Clostridium may pose a risk for the stability of vacuum-packed beef produced in tropical countries during shelf-life and highlights the need of adopting control measures to reduce their incidence in abattoir and the occurrence of `blown pack` spoilage. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Objectives: Amazonian populations are experiencing dietary changes characteristic of the nutrition transition. However, the degree of change appears to vary between urban and rural settings. To investigate this process, we determined carbon and nitrogen stable isotope ratios in fingernails and dietary intake of Amazonian populations living along a rural to urban continuum along the Solimoes River in Brazil. Methods: Carbon and nitrogen stable isotope ratios were analyzed from the fingernails of 431 volunteer subjects living in different settings ranging from rural villages, small towns to urban centers along the Solimoes River. Data from 200 dietary intake surveys were also collected using food frequency questionnaires and 24-h recall interviews in an effort to determine qualitative aspects of diet composition. Results: Fingernail delta(13)C values (mean standard deviation) were -23.2 +/- 1.3, 20.2 +/- 1.5, and 17.4 +/- 1.3 parts per thousand and delta(15)N values were 11.8 +/- 0.6, 10.4 +/- 0.8, and 10.8 +/- 0.7 parts per thousand for those living in rural villages, small towns, and major cities, respectively. We found a gradual increase in the number of food items derived from C(4) plant types (meat and sugar) and the replacement of food items derived from C(3) plant types (fish and manioc flour) with increasing size of urban centers. Conclusion: Increasing urbanization in the Brazilian Amazon is associated with a significant change in food habits with processed and industrialized products playing an increasingly important role in the diet and contributing to the nutrition transition in the region. Am. J. Hum. Biol. 23:642-650, 2011. (C) 2011 Wiley-Liss, Inc.
Resumo:
BACKGROUND: Xylitol bioproduction from lignocellulosic residues comprises hydrolysis of the hemicellulose, detoxification of the hydrolysate, bioconversion of the xylose, and recovery of xylitol from the fermented hydrolysate. There are relatively few reports on xylitol recovery from fermented media. In the present study, ion-exchange resins were used to clarify a fermented wheat straw hemicellulosic hydrolysate, which was then vacuum-concentrated and submitted to cooling in the presence of ethanol for xylitol crystallization. RESULTS: Sequential adsorption into two anion-exchange resins (A-860S and A-500PS) promoted considerable reductions in the content of soluble by-products (up to 97.5%) and in medium coloration (99.5%). Vacuum concentration led to a dark-colored viscous solution that inhibited xylitol crystallization. This inhibition could be overcome by mixing the concentrated medium with a commercial xylitol solution. Such a strategy led to xylitol crystals with up to 95.9% purity. The crystallization yield (43.5%) was close to that observed when using commercial xylitol solution (51.4%). CONCLUSION: The experimental data demonstrate the feasibility of using ion-exchange resins followed by cooling in the presence of ethanol as a strategy to promote the fast recovery and purification of xylitol from hemicellulose-derived fermentation media. (c) 2008 Society of Chemical Industry.
Resumo:
Ceriporiopsis subvermispora is a promising white-rot fungus for biopulping. However, the underlying biochemistry involved in lignin removal and insignificant cellulose degradation by this species is not completely understood. This paper addresses this topic focusing on the involvement of ethanol-soluble extractives and wood transformation products in the biodegradation process. Cultures containing ethanol-extracted or in natura wood chips presented similar levels of extracellular enzymes and degradation of wood components. Fe3+-reducing compounds present in undecayed Pinus taeda were rapidly diminished by fungal degradation. Lignin-degradation products released during biodegradation restored part of the Fe3+-reducing activity. However, Fe3+ reduction was ineffective in presence of 0.5 mM oxalate at pH 4.5. Fungal consumption of Fe3+-reducing compounds and secretion of oxalic acid minimized the significance of Fenton`s reaction in the initial stages of wood biotreatment. This would explain limited polysaccharide degradation by the fungus that also lacks a complete set of hydrolytic enzymes. Scientific relevance of the paper: Ceriporiopsis subvermispora is a white-rot fungus suitable for biopulping processes because it degrades lignin selectively and causes significant structural changes on the wood components during the earlier decay stages. However, the intricate mechanism to explain lignin transformation and insignificant cellulose degradation by this species remains poorly understood. Some recent evidences pointed out for lipid peroxidation reactions as all initiating process explaining lignin degradation. On the other hand, alkylitaconic acids produced by the fungus via transformations of fatty acids occurring in wood showed to prevent polysaccharide degradation in Fenton reactions. In this context, one may conclude that the involvement of native wood substances or their transformation products in the overall wood biodegradation process induced by C subvermispora is still a matter of discussion. While free and esterified fatty acids present in wood extractives may be involved in the biosynthesis of alkylitaconic acids and in lipid peroxidation reactions, some extractives and lignin degradation products can reduce Fe3+, providing Fe2+ species needed to form OH radical via Fenton`s reaction. The present study focuses on this topic by evaluating the relevance of ethanol-soluble extractives and wood transformation products on the biodegradation of P. taeda by C subvermispora. For this, solid-state cultures containing ethanol-extracted and in natura wood chips were evaluated in details for up to 4 weeks. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This work aims to characterize corrosion products formed on copper samples exposed to synthetic rainwater of Rio Janeiro and Sao Paulo. XRD and XPS were employed to determine their composition, while electrochemical techniques were used to evaluate their protective properties. XRD and XPS indicated the thickening of the corrosion layer with time. Electrochemical results showed that the protectiveness of the corrosion layer depends on the solution composition. Based on our findings a corrosion mechanism for copper in simulated rainwater is proposed where the role of NH(4)(+) ions in the cuprite layer partial regeneration is taken into account. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Isotretinoin is the drug of choice for the management of severe recalcitrant nodular acne. Nevertheless, some of its physical-chemical properties are still poorly known. Hence, the aim of our study consisted to comparatively evaluate the particle size distribution (PSD) and characterize the thermal behavior of the three encapsulated isotretinoin products in oil suspension (one reference and two generics) commercialized in Brazil. Here, we show that the PSD, estimated by laser diffraction and by polarized light microscopy, differed between the generics and the reference product. However, the thermal behavior of the three products, determined by thermogravimetry (TGA), differential thermal (DTA) analyses and differential scanning calorimetry (DSC), displayed no significant changes and were more thermostable than the isotretinoin standard used as internal control. Thus, our study suggests that PSD analyses in isotretinoin lipid-based formulations should be routinely performed in order to improve their quality and bioavailability. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Color, pH, shear force, water-holding capacity, chemical composition, cholesterol content, and fatty acid profile from conventional, free-range and alternative broiler breast meat were determined in order to evaluate differences in the quality of broiler meat produced under different systems. Broilers reared in a conventional system had the highest lipid content (1.3%) but lower proportions of polyunsaturated (17.3%) and omega-3 fatty acids (0.3%) (p<0.05) compared to free-range and alternative broilers. On the other hand, free-range broilers had a lower cholesterol content (48.6 mg center dot 100 g(-1)) and lower pH (5.7 1) while broilers raised in an alternative system had a higher shear force (2.33 kgf) and lower yellowness value (b* value = 3.15) when compared to the other rearing systems (p<0.05).
Resumo:
Aqueous extract of mate (dried leaves of Ilex paraguariensis) added to drinking water for broilers for the last 14 days prior to slaughter did not affect performance at 25 days of age, but improved oxidative stability of the chicken meat. Oxidative stability of precooked breast meat made from control meat (CON) and from meat of broilers raised on water with mate added was investigated during chill storage for up to 7 days. The use of mate showed no influence on the content of lipids in chicken breast meat; however, lipid oxidation measured as thiobarbituric acid-reactive substances (TBARS) was significantly lower for meat from broilers raised on water with mate extracts in different concentrations (MA0.1, MA0.5, and MA1.0 corresponding to 0.1, 0.5, and 1.0% of mate dried leaves). The relative effect was largest at 1 day of storage with more than 50% reduction on TBARS; the result was still significant after 3 days, but almost vanished after 7 days, when oxidative rancidity was very high in all samples. In meat from broilers raised on water with mate extract, vitamin E was protected during cooking, although in the very rancid meat balls at 7 days of storage, the protection almost disappeared. Nevertheless, mate can be an interesting natural alternative to be used in chicken diets to improve lipid stability of the meat.
Resumo:
This study examines the effects of partially or completely replacing pork backfat with soybean oil in mortadella production. Mortadella sausages of various formulations showed no differences (P > 0.05) in any of the technological and physico-chemical parameters evaluated (process yield, shear force, pH, water activity and proximate composition). When compared to products made with pork backfat, those made with vegetable oil had a higher unsaturated fatty acid content (P <= 0.05) and a similar cholesterol content (P > 0.05). Products made with vegetable oil scored lower (P <= 0.05) than those made with pork fat on all of the evaluated sensory attributes (colour, odour, flavour, texture and overall acceptability).
Resumo:
The objective of this study was to evaluate the effects of dietary addition of ground oilseed sources on the quality, fatty acid profile, and CLA content of meat from zebu steers. Thirty-one zebu steers with an initial average age of 23 mo and an initial BW of 365 kg were used in this study. The experimental period was 84 d, which was preceded by an adaption period of 28 d. The diet was provided ad libitum with a forage: concentrate ratio of 40:60. Corn silage was used as the forage source. Four different concentrates were formulated for each treatment: without additional lipids (control) or with ground soybeans (SB), ground cottonseed (CS), or ground linseed (LS). The SB, CS, and LS diets were formulated to have 6.5% ether extract on a total dietary DM basis. The experiment was set up as a completely randomized design. After slaughter, samples were taken from the longissimus thoracis muscle for the measurement of fatty acid concentration and the evaluation of meat quality. The luminosity index was greater in the control and LS diets (P < 0.01). The greatest percentages of myristic acid (C14:0), palmitic acid (C16:0), trans octadecenoic acid (C18:1 trans-10, trans-11, or trans-12), and SFA in the subcutaneous fat were observed in the CS treatment (P < 0.01). Moreover, the least percentages of oleic acid (C18:1 cis-9) and total unsaturated fatty acids in the subcutaneous fat were observed in the CS diet (P < 0.01). The meat linoleic acid and a-linolenic acid percentages were greatest in the SB and LS treatments, respectively (P < 0.001). The unsaturated fatty acid: SFA ratio was smallest for the CS diet (P < 0.01). A gradual increase in oxidation was observed as a function of storage time; however, the diets did not affect the rancidity of the meat (P > 0.05). The fatty acid profile of subcutaneous fat was impaired by the addition of CS. Supplying ground oilseeds did not increase the content of CLA in the meat.
Resumo:
Feed is responsible for about 70% of broilers production costs, leading to an increasing number of studies on alternative dietary products that benefit bird performance and lower production costs. Since the 1950s, antimicrobial additives are the most frequently used performance enhancers in animal production and their positive results are observed even in high-challenge conditions. Since the 1990s, due to the ban of the use of some antibiotics as growth promoters and the growing trend of the public to consume natural products, plant extracts have been researched as alternatives to antibiotic growth promoters. The first study that evaluated the antibacterial activities of plant extracts was carried out in 1881; however, they started to be used as flavor enhancers only during the next decades. With the emergence of antibiotics in the 1950s, the use of plant extracts as antimicrobial agents almost disappeared. There are several studies in literature assessing the use of plant extracts, individually or in combination, as antimicrobials, antioxidants, or digestibility enhancers in animal feeds. Research results on the factors affecting their action, such as plant variety, harvest time, processing, extraction, as well as the technology employed to manufacture the commercial product and dietary inclusion levels show controversial results, warranting the need of further research and standardization for the effective use of plant extracts as performance enhancers, when added to animal feeds. This article aims at presenting plant extracts as alternatives to antibiotics, explaining their main modes of action as performance enhancers in broiler production.
Resumo:
Using the fish silage to partially replace proteic feedstuff in aquafeeds is an alternative to mitigate sanitary and environmental problems caused by the lack of adequate destination for fisheries residues. It would also lower feed costs, consequently improving fish culture profitability. However, using fish silages in aquafeeds depends on determination of its apparent digestibility coefficients (ADC). This work aimed to determining the ADC of crude protein and amino acids of acid silage (AS), biological silage (BS) and enzymatic silage (ES) for juvenile Nile tilapia (94.5 +/- 12.7 g). The ADC(CP) was: 92.0%, 89.1% and 93.7% for AS, BS and SE respectively. The average ADC of amino acids was: 91.8%, 90.8% and 94.6% for AS, BS and ES respectively. Results encourage the use of AS, BS and ES to partially replace protein sources in balanced diets for neotropical fish.