52 resultados para discontinuous piecewise linear systems
Resumo:
We analyze a threshold contact process on a square lattice in which particles are created on empty sites with at least two neighboring particles and are annihilated spontaneously. We show by means of Monte Carlo simulations that the process undergoes a discontinuous phase transition at a definite value of the annihilation parameter, in accordance with the Gibbs phase rule, and that the discontinuous transition exhibits critical behavior. The simulations were performed by using boundary conditions in which the sites of the border of the lattice are permanently occupied by particles.
Resumo:
We show how to set up a constant particle ensemble for the steady state of nonequilibrium lattice-gas systems which originally are defined on a constant rate ensemble. We focus on nonequilibrium systems in which particles are created and annihilated on the sites of a lattice and described by a master equation. We consider also the case in which a quantity other than the number of particle is conserved. The conservative ensembles can be useful in the study of phase transitions and critical phenomena particularly discontinuous phase transitions.
Resumo:
We report the partitioning of the interaction-induced static electronic dipole (hyper)polarizabilities for linear hydrogen cyanide complexes into contributions arising from various interaction energy terms. We analyzed the nonadditivities of the studied properties and used these data to predict the electric properties of an infinite chain. The interaction-induced static electric dipole properties and their nonadditivities were analyzed using an approach based on numerical differentiation of the interaction energy components estimated in an external electric field. These were obtained using the hybrid variational-perturbational interaction energy decomposition scheme, augmented with coupled-cluster calculations, with singles, doubles, and noniterative triples. Our results indicate that the interaction-induced dipole moments and polarizabilities are primarily electrostatic in nature; however, the composition of the interaction hyperpolarizabilities is much more complex. The overlap effects substantially quench the contributions due to electrostatic interactions, and therefore, the major components are due to the induction and exchange induction terms, as well as the intramolecular electron-correlation corrections. A particularly intriguing observation is that the interaction first hyperpolarizability in the studied systems not only is much larger than the corresponding sum of monomer properties, but also has the opposite sign. We show that this effect can be viewed as a direct consequence of hydrogen-bonding interactions that lead to a decrease of the hyperpolarizability of the proton acceptor and an increase of the hyperpolarizability of the proton donor. In the case of the first hyperpolarizability, we also observed the largest nonadditivity of interaction properties (nearly 17%) which further enhances the effects of pairwise interactions.
Resumo:
The concept of Fock space representation is developed to deal with stochastic spin lattices written in terms of fermion operators. A density operator is introduced in order to follow in parallel the developments of the case of bosons in the literature. Some general conceptual quantities for spin lattices are then derived, including the notion of generating function and path integral via Grassmann variables. The formalism is used to derive the Liouvillian of the d-dimensional Linear Glauber dynamics in the Fock-space representation. Then the time evolution equations for the magnetization and the two-point correlation function are derived in terms of the number operator. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Two Augmented Lagrangian algorithms for solving KKT systems are introduced. The algorithms differ in the way in which penalty parameters are updated. Possibly infeasible accumulation points are characterized. It is proved that feasible limit points that satisfy the Constant Positive Linear Dependence constraint qualification are KKT solutions. Boundedness of the penalty parameters is proved under suitable assumptions. Numerical experiments are presented.
Resumo:
In this paper, we present a Bayesian approach for estimation in the skew-normal calibration model, as well as the conditional posterior distributions which are useful for implementing the Gibbs sampler. Data transformation is thus avoided by using the methodology proposed. Model fitting is implemented by proposing the asymmetric deviance information criterion, ADIC, a modification of the ordinary DIC. We also report an application of the model studied by using a real data set, related to the relationship between the resistance and the elasticity of a sample of concrete beams. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
We study an one-dimensional nonlinear reaction-diffusion system coupled on the boundary. Such system comes from modeling problems of temperature distribution on two bars of same length, jointed together, with different diffusion coefficients. We prove the transversality property of unstable and stable manifolds assuming all equilibrium points are hyperbolic. To this end, we write the system as an equation with noncontinuous diffusion coefficient. We then study the nonincreasing property of the number of zeros of a linearized nonautonomous equation as well as the Sturm-Liouville properties of the solutions of a linear elliptic problem. (C) 2008 Elsevier Inc. All rights reserved.