48 resultados para computer based experiments


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stimulating neural electrodes are required to deliver charge to an environment that presents itself as hostile. The electrodes need to maintain their electrical characteristics (charge and impedance) in vivo for a proper functioning of neural prostheses. Here we design implantable multi-walled carbon nanotubes coating for stainless steel substrate electrodes, targeted at wide frequency stimulation of deep brain structures. In well-controlled, low-frequency stimulation acute experiments, we show that multi-walled carbon nanotube electrodes maintain their charge storage capacity (CSC) and impedance in vivo. The difference in average CSCs (n = 4) between the in vivo (1.111 mC cm(-2)) and in vitro (1.008 mC cm(-2)) model was statistically insignificant (p > 0.05 or P-value = 0.715, two tailed). We also report on the transcription levels of the pro-inflammatory cytokine IL-1 beta and TLR2 receptor as an immediate response to low-frequency stimulation using RT-PCR. We show here that the IL-1 beta is part of the inflammatory response to low-frequency stimulation, but TLR2 is not significantly increased in stimulated tissue when compared to controls. The early stages of neuroinflammation due to mechanical and electrical trauma induced by implants can be better understood by detection of pro-inflammatory molecules rather than by histological studies. Tracking of such quantitative response profits from better analysis methods over several temporal and spatial scales. Our results concerning the evaluation of such inflammatory molecules revealed that transcripts for the cytokine IL-1 beta are upregulated in response to low-frequency stimulation, whereas no modulation was observed for TLR2. This result indicates that the early response of the brain to mechanical trauma and low-frequency stimulation activates the IL-1 beta signaling cascade but not that of TLR2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two experiments were conducted to investigate the effects of equine chorionic gonadotropin (eCG) at progestin removal and gonadotropin-releasing hormone (GnRH) at timed artificial insemination (TA!) on ovarian follicular dynamics (Experiment 1) and pregnancy rates (Experiment 2) in suckled Nelore (Bos indicus) cows. Both experiments were 2 x 2 factorials (eCG or No eCG, and GnRH or No GnRH), with identical treatments. In Experiment 1, 50 anestrous cows, 134.5 +/- 2.3 d postpartum, received a 3 mg norgestomet ear implant se, plus 3 mg norgestomet and 5 mg estradiol valerate im on Day 0. The implant was removed on Day 9, with TAI 54 h later. Cows received 400 IU eCG or no further treatment on Day 9 and GnRH (100 mu g gonadorelin) or no further treatment at TAI. Treatment with eCG increased the growth rate of the largest follicle from Days 9 to 11 (means +/- SEM, 1.53 +/- 0.1 vs. 0.48 +/- 0.1 mm/d; P < 0.0001), its diameter on Day 11(11.4 +/- 0.6 vs. 9.3 +/- 0.7 mm; P = 0.03), as well as ovulation rate (80.8% vs. 50.0%, P = 0.02), whereas GnRH improved the synchrony of ovulation (72.0 +/- 1.1 VS. 71.1 +/- 2.0 h). In Experiment 2 (n = 599 cows, 40 to 120 d postpartum), pregnancy rates differed (P = 0.004) among groups (27.6%, 40.1%, 47.7%, and 55.7% for Control. GnRH, eCG, and eCG + GnRH groups). Both eCG and GnRH improved pregnancy rates (51.7% vs. 318%, P = 0.002; and 48.0% vs 37.6%, P = 0.02, respectively), although their effects were not additive (no significant interaction). In conclusion, eCG at norgestomet implant removal increased the growth rate of the largest follicle (LF) from implant removal to TAI, the diameter of the LF at TAI, and rates of ovulation and pregnancy rates. Furthermore, GnRH at TAI improved the synchrony of ovulations and pregnancy rates in postpartum Nelore cows treated with a norgestomet-based TAI protocol. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose: The aim of this research was to assess the dimensional accuracy of orbital prostheses based on reversed images generated by computer-aided design/computer-assisted manufacturing (CAD/CAM) using computed tomography (CT) scans. Materials and Methods: CT scans of the faces of 15 adults, men and women older than 25 years of age not bearing any congenital or acquired craniofacial defects, were processed using CAD software to produce 30 reversed three-dimensional models of the orbital region. These models were then processed using the CAM system by means of selective laser sintering to generate surface prototypes of the volunteers` orbital regions. Two moulage impressions of the faces of each volunteer were taken to manufacture 15 pairs of casts. Orbital defects were created on the right or left side of each cast. The surface prototypes were adapted to the casts and then flasked to fabricate silicone prostheses. The establishment of anthropometric landmarks on the orbital region and facial midline allowed for the data collection of 31 linear measurements, used to assess the dimensional accuracy of the orbital prostheses and their location on the face. Results: The comparative analyses of the linear measurements taken from the orbital prostheses and the opposite sides that originated the surface prototypes demonstrated that the orbital prostheses presented similar vertical, transversal, and oblique dimensions, as well as similar depth. There was no transverse or oblique displacement of the prostheses. Conclusion: From a clinical perspective, the small differences observed after analyzing all 31 linear measurements did not indicate facial asymmetry. The dimensional accuracy of the orbital prostheses suggested that the CAD/CAM system assessed herein may be applicable for clinical purposes. Int J Prosthodont 2010;23:271-276.