71 resultados para automotive catalysts
Resumo:
This work presents a study of the catalytic oxidation of ethanol on polycrystalline gold electrode in alkaline media. The investigation was carried out by means of chronoamperometry, cyclic voltammetry, and in situ FTIR spectroscopy. The main goal was to investigate the early stages of ethanol electrooxidation, namely at fairly low potentials (E = 600 mV vs. RHE) and for moderate reaction times (t < 300 s). Chronoamperometric experiments show a current increase accompanying the increasing in the ethanol concentration up to about 2 M and then a slight decrease at 3 M. Adsorbed CO has been observed as early as about 200 mV vs. RHE and indicates that the cleavage of the C-C bond might occur, probably to a small extent, at very low overpotentials during ethanol adsorption on gold surface. The amount of dissolved acetate ions produced during the chronoamperomentry was followed by the asymmetric stretching band at 1558 cm(-1) as a function of time, and found to increase linearly with time up to 300 s. This allowed estimating the reaction order of acetate formation with respect to ethanol concentration.
Resumo:
Physical and electrochemical properties of nanostructured Ni-doped manganese oxides (MnO(x)) catalysts supported on different carbon powder substrates were investigated so as to characterize any carbon substrate effect toward the oxygen reduction reaction (ORR) kinetics in alkaline medium. These NiMnO(x)/C materials were characterized using physicochemical analyses. Small insertion of Ni atoms in the MnO(x) lattice was observed, which consists of a true doping of the manganese oxide phase. The corresponding NiMnO(x) phase is present in the form of needles or agglomerates, with crystallite sizes in the order of 1.5-6.7 nm (from x-ray diffraction analyses). Layered manganite (MnOOH) phase has been detected for the Monarch 1000-supported NiMnO(x) material, while different species of MnO(x) phases are present at the E350G and MM225 carbons. Electrochemical studies in thin porous coating active layers in the rotating ring-disk electrode setup revealed that the MnO(x) catalysts present better ORR kinetics and electrochemical stability upon Ni doping. The ORR follows the so-called peroxide mechanism on MnO(x)/C catalysts, with the occurrence of minority HO(2)(-) disproportionation reaction. The HO(2)(-) disproportionation reaction progressively increases with the Ni content in NiMnO(x) materials. The catalysts supported on the MM225 and E350G carbons promote faster disproportionation reaction, thus leading to an overall four-electron ORR pathway. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3528439] All rights reserved.
Resumo:
The adsorption kinetics of phosphate onto Nb(2)O(5)center dot nH(2)O was investigated at initial phosphate concentrations 10 and 50 mg L(-1). The kinetic process was described by a pseudo second-order rate model very well. The adsorption thermodynamics was carried out at 298, 308, 318, 328 and 338 K. The positive values of both Delta H and Delta S suggest an endothermic reaction and increase in randomness at the solid-liquid interface during the adsorption. Delta G values obtained were negative indicating a spontaneous adsorption process. The Langmuir model described the data better than the Freundlich isotherm model. The peak appearing at 1050 cm(-1) in IR spectra after adsorption was attributed to the bending vibration of adsorbed phosphate. The effective desorption could be achieved using water at pH 12. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The objective of this study is to graft the Surface of carbon black, by chemically introducing polymeric chains (Nafion (R) like) with proton-conducting properties. This procedure aims for a better interaction of the proton-conducting phase with the metallic catalyst particles, as well as hinders posterior support particle agglomeration. Also loss of active surface call be prevented. The proton conduction between the active electrocatalyst site and the Nafion (R) ionomer membrane should be enhanced, thus diminishing the ohmic drop ill the polymer electrolyte membrane fuel cell (PEMFC). PtRu nanoparticles were supported on different carbon materials by the impregnation method and direct reduction with ethylene glycol and characterized using amongst others FTIR, XRD and TEM. The screen printing technique was used to produce membrane electrode assemblies (MEA) for single cell tests in H(2)/air(PEMFC) and methanol operation (DMFC). In the PEMFC experiments, PtRu supported on grafted carbon shows 550 mW cm(-2) gmetal(-1) power density, which represents at least 78% improvement in performance, compared to the power density of commercial PtRu/C ETEK. The DMFC results of the grafted electrocatalyst achieve around 100% improvement. The polarization Curves results clearly show that the main Cause of the observed effect is the reduction in ohmic drop, caused by the grafted polymer. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This work discusses the resultant microstructure of laser surface treated galvanised steel and the mechanical properties of adhesively bonded surfaces therein. The surface microstructure obtained at laser intensities between 170 and 1700 MW cm 22 exhibit zinc melting and cavity formation. The wavy surface morphology of the treated surface exhibits an average roughness Ra between 1.0 and 1.5 mu m, and a mean roughness depth R(z) of 8.6 mu m. Atomic force microscopic analyses revealed that the R(z) inside the laser shot cavities increased from 68 to 243 nm when the incident laser intensity was increased from 170 to 1700 MW cm(-2). X-ray fluorescence analyses were used to measure Zn coating thicknesses as a function of process parameters. Both X-ray fluorescence and X-ray diffraction analyses demonstrated that the protective coating remains at the material surface, and the steel structure beneath was not affected by the laser treatment. Tensile tests under peel strength conditions demonstrated that the laser treated adhesively joined samples had resistance strength up to 88 MPa, compared to a maximum of only 23 MPa for the untreated surfaces. The maximum deformation for rupture was also greatly increased from 0.07%, for the original surface, to 0.90% for the laser treated surfaces.
Resumo:
This keynote paper aims at analyzing relevant industrial demands for grinding research. The chosen focus is to understand what are the main research challenges in the extensive industrial use of the process. Since the automotive applications are the most important driving forces for grinding development, the paper starts with an analysis on the main trends in more efficient engines and the changes in their components that will affect the grinding performance. A view from 23 machine tool builders is also presented based on a survey made in interviews and during the EMO and IMTS machine tool shows. Case studies received by the STC G members were used to show how research centers and industries are collaborating. A view from the authors and the final conclusions show hot topics for future grinding research. (C) 2009 CIRP.
Resumo:
The flow in the automotive catalytic converter is, in general, not uniform. This significantly affects cost, service life, and performance, in particular, during cold startup. The current paper reports on a device that provided a large improvement in flow uniformity. The device is to be placed in the converter inlet diffuser and is constructed out of ordinary screens. It is cheap and easy to install. Moreover, the device does not present most of the undesired effects, such as increase in pressure drop and time to light off, often observed in other devices developed for the same purpose.
Resumo:
This work presents the implementation of the ultrasonic shear reflectance method for viscosity measurement of Newtonian liquids using wave mode conversion from longitudinal to shear waves and vice versa. The method is based on the measurement of the complex reflection coefficient (magnitude and phase) at a solid-liquid interface. The implemented measurement cell is composed of an ultrasonic transducer, a water buffer, an aluminum prism, a PMMA buffer rod, and a sample chamber. Viscosity measurements were made in the range from 1 to 3.5 MHz for olive oil and for automotive oils (SAE 40, 90, and 250) at 15 and 22.5 degrees C, respectively. Moreover, olive oil and corn oil measurements were conducted in the range from 15 to 30 degrees C at 3.5 and 2.25 MHz, respectively. The ultrasonic measurements, in the case of the less viscous liquids, agree with the results provided by a rotational viscometer, showing Newtonian behavior. In the case of the more viscous liquids, a significant difference was obtained, showing a clear non-Newtonian behavior that cannot be described by the Kelvin-Voigt model.
Resumo:
This work presents a comparison between laser weld (LBW) and electric resistance spot weld (ERSW) processes used for assemblies of components in a body-in-white (BIW) at a world class automotive industry. It is carried out by evaluating the mechanical strength modeled both by experimental and numerical methods. An ""Arcan"" multiaxial test was designed and manufactured in order to enable 0 degrees, 45 degrees and 90 degrees directional loadings. The welded specimens were uncoated low carbon steel sheets (S-y = 170 MPa) used currently at the automotive industry, with two different thicknesses: 0.80 and 1.20 mm. A numerical analysis was carried out using the finite element method (FEM) through LS-DYNA code. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
In this work, we experimentally showed that the spontaneous segregation of MgO as surface excess in MgO doped SnO(2) nanoparticles plays an important role in the system`s energetics and stability. Using Xray fluorescence in specially treated samples, we quantitatively determined the fraction of MgO forming surface excess when doping SnO(2) with several different concentrations and established a relationship between this amount and the surface energy of the nanoparticles using the Gibbs approach. We concluded that the amount of Mg ions on the surface was directly related to the nanoparticles total free energy, in a sense that the dopant will always spontaneously distribute itself to minimize it if enough diffusion is provided. Because we were dealing with nanosized particles, the effect of MgO on the surface was particularly important and has a direct effect on the equilibrium particle size (nanoparticle stability), such that the lower the surface energy is, the smaller the particle sizes are, evidencing and quantifying the thermodynamic basis of using additives to control SnO(2) nanoparticles stability. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This work addressed the production of carbon nanomaterials (CNMs) by catalytic conversion of wastes from the bioethanol industry, in the form of either sugarcane bagasse or corn-derived distillers dried grains with solubles (DDGS). Both bagasse and DDGS were pyrolysed at temperatures in the range of 600-1000 degrees C. The pyrolyzate gases were then used as CNM growth agents by chemical vapor deposition on stainless steel meshes, serving as both catalysts and substrates. CNM synthesis temperatures of 750-1000 degrees C were explored, and it was determined that their growth was most pronounced at 1000 degrees C. The nanomaterials produced from pyrolysis of bagasse were in the form of long, straight, multi-wall nanotubes with smooth walls and axially uniform diameters. Typical lengths were circa 50 mu m and diameters were in the range of 20-80 nm. The nanomaterials produced from pyrolysis of DDGS were in the form of long, entangled, rope-like structures with rugged walls, and axially non-uniform diameters. Typical diameters were in the range of 100-300 nm and their lengths were in the tens of microns. This process also produces a bio-syngas byproduct that is enriched in hydrogen. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We report on a convergent approach for the generation of dendrimers containing the [Ru3O(aC)(6)] electroactive core, of great interest as multielectron transfer catalysts. The proposed strategy is based on the generation of the trimeric complex [(Ru3O(ac)(6)(4-pic)(2)(pz))2-mu(2)-Ru3O(ac)(6)(CH3OH)](3+) (ac = acetate, 4-pic = 4-methylpyridine, pz = pyrazine). In this complex, the labile CH3OH ligand can be displaced by the bridging pyrazine ligand of [Ru3O(ac)(6)(pz)3](0), leading to the self-assembly of the [{[Ru3O(ac)(6)(4-pic)(2)(pz)](2)-mu(2)-Ru3O(ac)(6)(pz)}(3)- mu(3)-Ru3O(ac)(6)](n+) dendrimer containing 30 ruthenium atoms. ((C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008).
Resumo:
The increase of the women purchase power has led some companies to adopt strategies of products differentiation as well as to produce specific products to the female public. The auto industry is not immune to this phenomenon, once the women represent, approximately half of the automobile sales in the country. Considering the consumption and the behavior differences between women and men, it has set the following question: are there differences between the choices associated to the automobile by men and the choices associated to the automobile by women? It has been presented to the participants items found in the people`s day-by-day, which are valorized by them, and the participants have been asked to choose and associate these items to the automobile. The results analysis revealed there are more similarities than differences between choices associated to the automobile by men ad choices associated to the automobile by women. The similarity between the choices suggests that the representations, the meanings and values assigned. to the car by men ana women are similar and thus the strategy of product differentiation does not apply to the automotive industry
Resumo:
This work reports the synthesis, characterization, and evaluation of new porphyrins tailored to become biodiesel fluorescent markers. The compounds were obtained by the synthetic modification of the commercially available porphyrin 5,10,15,20-meso-tetrakis(pentafluorophenyl)porphyrin (TPPF(20)) using ethanol and hexadecan-1-ol (cetylic alcohol) as nucleophilic reagents. The stability of the marked biodiesel fuel solutions was investigated every 15 days for a total period of 3 months, and under different storage temperature and light exposure condition, simulating the conventional stock conditions. The influence of the different substituents of the porphyrins on the fluorescence properties of the biodiesel fuel markers was also assessed. The resulting porphyrins were highly soluble in biodiesel fuel and displayed strong fluorescence characterized by two strong emission bands. The fluorescent markers did not affect the biodiesel physical properties and were stable in storage conditions for at least 3 months at a concentration of 4 ppm. The best storage condition was found to be absence of light and 6 degrees C; the limit of detection by photoluminescence technique had magnitude of 10(-13) mol L(-1). The synthesized porphyrins were characterized by nuclear magnetic resonance ((1)H-NMR and (19)F-NMR), mass spectrometry (HRMS), ultraviolet visible absorption spectroscopy, and photoluminescence spectroscopy. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The influence of the preparation method on the performance of RuO(2)-Ta(2)O(5) electrodes was evaluated toward the ethanol oxidation reaction (EOR). Freshly prepared RuO(2)-Ta(2)O(5) thin films containing between 30 and 80 at.% Ru were prepared by two different methods: the modified Pechini-Adams method (DPP) and standard thermal decomposition (STD). Electrochemical investigation of the electrode containing RuO(2)-Ta(2)O(5) thin films was conducted as a function of electrode composition in a 0.5-mol dm(-3) H(2)SO(4) solution, in the presence and absence of ethanol and its derivants (acetaldehyde and acetic acid). At a low ethanol concentration (5 mmol dm(-3)), ethanol oxidation leads to high yields of acetic acid and CO(2). On the other hand, an increase in ethanol concentration (15-1000 mmol dm(-3)) favors acetaldehyde formation, so acetic acid and CO(2) production is hindered, in this case. Electrodes prepared by DPP provide higher current efficiency than STD electrodes for all the investigated ethanol concentrations. This may be explained by the increase in electrode area obtained with the DPP preparation method compared with STD. (c) 2008 Elsevier Ltd. All rights reserved.