56 resultados para adsorption by clay
Resumo:
The adsorption of the diazo dye Direct Red 23 onto a zinc oxide surface at 30 degrees C in the dark was investigated. The color reduction was monitored by spectrophotometry at 503 run. The FTIR and Raman spectra of the Direct Red 23 adsorption as a function of ZnO concentration were registered. From the PM3 semi-empirical calculations of the atomic charge density and dipole moment of the Direct Red 23 molecule, it was demonstrated that the azo, dye molecule may be adsorbed onto the ZnO Surface through molecule geometry modifications, enhancing the interfacial area causing a variation in the bonding frequencies. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The structure of chemically prepared poly-p-phenylenediamine (PpPD) was investigated by Resonance Raman (RR), FTIR, UV-VIS-NIR, X-ray photoelectron (XPS), X-ray Absorption at Nitrogen K edge (N K XANES), and Electron paramagnetic Resonance (EPR) spectroscopies. XPS, EPR and N K XANES data reveal that polymeric structure is formed mainly by radical cations and dication nitrogens. It excludes the possibility that PpPD chains have azo or phenazinic nitrogens, as commonly is supposed in the literature. The RR spectrum of PpPD shows two characteristic bands at 1527 cm(-1) and 1590 cm(-1) that were assigned to nu C=N and nu C=C of dication units, respectively, similar to polyaniline in pernigraniline base form. The presence of radical cations was confirmed by Raman data owing to the presence of bands at 1325/1370 cm(-1), characteristic of nu C-N of polaronic segments. Thus, all results indicate that PpPD has a doped PANT-like structure, with semi-quinoid and quinoid rings, and has no phenazinic rings, as observed for poly-o-phenylenediamine. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The present paper describes the synthesis and characterization by dynamic light scattering, X-ray diffraction, scanning electron microscopy and atomic force microscopy of Laponite RD/Sodium polystyrenesulfonate nanocomposites obtained by radical photopolymerization initiated by the cationic dye safranine. The presence of the clay mineral does not affect the hydrotropic aggregation of the monomers, but allows a better deaggregation of the initiator molecules, decreasing the quenching of the excited states that leads to the radicals that initiate polymerization. Increasing the amount of clay mineral loading in the polymerization mixture promotes higher monomer conversion and faster polymerization. The size of the nanocomposite particles, measured by light scattering decreases from 400 to 80 nm for clay mineral loadings of 1.0 wt.%. The X-ray diffraction patterns indicate that the clay mineral does not present a regular crystalline structure in the nanocomposite. Atomic force microscopy studies show films of sodium polystyrenesulfonate polymer with embedded Laponite platelets in its structure, forming 1-8 nm height and 25-100 nm diameter aggregates. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The wetting behavior of rhamnolipids produced by Pseudomonas aeruginosa LBI strain grown on waste oil substrate and sodium dodecyl sulfate (SDS) on glass, polyethylene terephthalate (PET), poly(vinyl chloride) (PVC), poly(epsilon-caprolactone) (PCL) and polymer blend (PVC-PCL) was investigated by the measuring contact angle of sessile drops, to determine the wetting characteristics of rhamnolipids. The comparison of the wetting profiles showed that at low SDS and rhamnolipid concentrations, the contact angle increased and when the concentration of the surfactant increased further, the contact angle decreased. The blend surface (PVC-PCL) showed better wettability than the homopolymers themselves and the blend changed the surface hydrophobicity of the polymer, making it more hydrophilic. The rhamnolipids produced by the LBI strain exhibited superior wetting abilities than the chemical surfactant SDS one. This is the first work that evaluates the wetting properties of rhamnolipids on polymer blends.
Resumo:
We have investigated the adsorbed intermediates of ethanol electro-oxidation at Pt(1 1 1), Pt(1 0 0) and Pt(1 1 0) using FTIR and SFG spectroscopies. Mainly, we focus on the CO formation. The aim of the present work is to compare the responses coming from two different surf, cc probes: a FTIR spectroscopy and SFG spectroscopy. Between 1800cm(-1) and 2300cm(-1), our MR and SFG results are in good agreement. Specifically in the case of the ethanol/Pt(1 1 1) interface, the SFG spectroscopy presents higher sensibility to the interface response compared to the FTIR spectroscopy. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Canonical Monte Carlo simulations for the Au(210)/H(2)O interface, using a force field recently proposed by us, are reported. The results exhibit the main features normally observed in simulations of water molecules in contact with different noble metal surfaces. The calculations also assess the influence of the surface topography on the structural aspects of the adsorbed water and on the distribution of the water molecules in the direction normal to the metal surface plane. The adsorption process is preferential at sites in the first layer of the metal. The analysis of the density profiles and dipole moment distributions points to two predominant orientations. Most of the molecules are adsorbed with the molecular plane parallel to surface, while others adsorb with one of the O-H bonds parallel to the surface and the other bond pointing towards the bulk liquid phase. There is also evidence of hydrogen bond formation between the first and second solvent layers at the interface. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The performance of La(2-x)M(x)CuO(4) perovskites (where M = Ce, Ca or Sr) as catalysts for the water-gas shift reaction was investigated at 290 degrees C and 360 degrees C. The catalysts were characterized by EDS, XRD, N(2) adsorption-desorption, XPS and XANES. The XRD results showed that all the perovskites exhibited a single phase (the presence of perovskite structure), suggesting the incorporation of metals in the perovskite structure. The XPS and XANES results showed the presence of Cu(2+) on the surface. The perovskites that exhibited the best catalytic performance were La(2-x)Ce(x)CuO(4) perovslcites, with CO conversions of 85%-90%. Moreover, these perovskites have higher surface areas and larger amounts of Cu on the surface. And Ce has a higher filled energy level than the other metals, increasing the energy of the valence band of Ce and providing more electrons for the reaction. Besides, the La(1.80)Ca(0.20)CuO(4) perovskite showed a good catalytic performance.
Resumo:
ZrO(2), gamma-Al(2)O(3) and ZrO(2)/gamma-Al(2)O(3)-supported copper catalysts have been prepared, each with three different copper loads (1, 2 and 5 wt%), by the impregnation method. The catalysts were characterized by nitrogen adsorption (BET), X-ray diffraction (XRD), temperature programmed reduction (TPR) with H(2), Raman spectroscopy and electronic paramagnetic resonance (EPR). The reduction of NO by CO was studied in a fixed-bed reactor packed with these catalysts and fed with a mixture of 1% CO and 1% NO in helium. The catalyst with 5 wt% copper supported on the ZrO(2)/gamma-Al(2)O(3) matrix achieved 80% reduction of NO. Approximately the same rate of conversion was obtained on the catalyst with 2 wt% copper on ZrO(2). Characterization of these catalysts indicated that the active copper species for the reduction of NO are those in direct contact with the oxygen vacancies found in ZrO(2). (C) 2009 Published by Elsevier Ltd.
Resumo:
We present in this work a comprehensive investigation of the role played by dissolved tetrafluoroboric acid on the electrochemical response of a polycrystalline platinum electrode in acidic media. HBF(4) from two different suppliers was employed and characterized in terms of the amount of arsenic contamination by Inductively Coupled Plasma-Optical Emission Spectroscopy. The effect of different amounts of HBF(4) on the voltammetric profile of the Pt vertical bar HClO(4)(aq) interface was investigated by means of electrochemical quartz crystal nanobalance (EQCN). Despite the comparable cyclic voltammograms, the presence of arsenic in one of the two HBF(4) used resulted in dramatic variations in the mass change profile, which evidences the deposition/dissolution of arsenic prior to the surface oxidation. For the arsenic-free HBF(4), its effect on the mass change profile was mainly associated to anion adsorption. The impact of dissolved HBF(4) on the electro-oxidation of formic acid was rationalized in terms of two contributions: current enhancement at low potentials due to the arsenic-assisted formic acid electro-oxidation and inhibition at high potentials due to anion adsorption. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Sewage sludge from wastewater treatment contains organic matter and plant nutrients that can play an important role in agricultural production and the maintenance of soil fertility, The present study has aimed to evaluate the degree of humification following sewage sludge application of soil organic matter by laser-induced fluorescence and humic acids using ultraviolet-visible fluorescence, and including comparison with Fourier-transform infrared spectroscopy and elemental analysis. Sewage sludge applications to the soil caused a decrease in the degree of humification of the soil organic matter and humic acids for both a Typic Eutrorthox (clayey) soil and a Typic Haplorthox (sandy) soil of around 14 and 27%, respectively. This effect is probably clue to incorporation of newly formed humic substances from the sewage sludge into the characteristics of less humified material, and to the indigenous soil humic substances. The minor alterations observed in the clay soil probably occurred due to both the greater mineral association, which better stabilized the indigenous soil organic matter, and the higher microbial activity in this soil, which accelerated sewage sludge mineralization. Sewage sludge applications increased the C content for the clay and sandy soils by 7.4 and 15.4 g kg(-1), respectively, suggesting a positive effect on these two soils.
Resumo:
Carboxylic acid groups in PAH/PAA-based multilayers bind silver cations by ion exchange with the acid protons. The aggregation and spatial distribution of the nanoparticles proved to be dependent oil the process used to reduce the silver acetate aqueous solution. The reducing method with ambient light formed larger nanoparticles with diameters ranging from 4-50 nm in comparison with the reduction method using UV light, which gave particles with diameters of 2-4 nm The high toughness of samples reduced by ambient light is a result of two population distributions of particle sizes caused by different mechanisms when compared with the UV light process. According to these phenomena, a judicious choice of the spectral source call be used as a way to control the type and size of silver nanoparticles formed on PEMs. Depending on the energy of the light source, the Ag nanoparticles present cubic and/or hexagonal crystallographic structures, as confirmed by XRD. Beyond the kinetically controlled process of UV photoinduced cluster formation, the annealing produced by UV light allowed a second mechanism to modify the growth rates, spatial distribution, and phases.