74 resultados para THERMOLUMINESCENCE DOSIMETRY PHOSPHOR
Resumo:
Photodynamic therapy requires a photosensitizer, oxygen, and activating light. For acne, pilosebaceous units are ""target"" structures. Porphyrins are synthesized in vivo from 5-aminolevulinic acid (ALA), particularly in pilosebaceous units. Different photosensitizers and drug delivery methods have been reported for acne treatment. There are a variety of porphyrin precursors with different pharmacokinetic properties. Among them, ALA and methyl-ester of ALA (MAT.) are available for possible off-label treatment of acne vulgaris. In addition, various light sources, light dosimetry, drug incubation time, and pre- and posttreatment care also change efficacy and side effects. None of these variables has been optimized for acne treatment, but a number of clinical trials provide helpful guidance. In this paper, we critically analyze clinical trials, case reports, and series of cases published through 2009. (J Am Acad Dermatol 2010;63:195-211.)
Resumo:
P>Background There is good evidence for the use of compression for some clinical indications but little is known about dosimetry in compression. Objective The aim of this work was to evaluate whether or not the use of compression stockings during part of the day would help in the reduction of evening oedema in patients with clinical, epidemiological, anatomical and physiopathological (CEAP) classifications C0 and C1. Methods The effects of elastic compression stockings on volumetric variations during the working day were evaluated for the legs of two men and 18 women (40 legs). The inclusion criterion was classification as C0 (10 legs) or C1 (30 legs) according to the CEAP criteria. Participants used three-quarter-length elastic compression stockings (20-30 mmHg) on three consecutive days for the entire day or only for the morning or they did not use the stockings at all. Volumetry using the water displacement technique was performed in the morning and in the evening. When the patients wore the stockings only during the morning, volumetry was also performed at 13:00 h. Results Significant increases in volume were observed for both legs when stockings were not used compared with the use of stockings in the morning only. After removing the stockings, both legs had significant increases in volume in the afternoon. However, use for half the day was better than not using the stockings at all. Conclusions The use of elastic compression stockings can reduce volumetric variations during working hours, with the use of stockings for the entire day being better than for just half the day.
Resumo:
Objectives. The diagnosis of root fractures by conventional radiographs is still difficult because of limitations of 2D images. Cone-beam volumetric tomography improves the diagnosis capacity in dentistry, such as increased radiation dose to the patient and presence of artifacts on the image. Study design. This study compared the images obtained on conventional periapical radiographs and 3D scans (Accuitomo 3DX) for the diagnosis of root fractures. Twenty patients with suspected root fractures were submitted to examination by periapical radiography and CBCT. Two professionals, unaware of the symptomatology, examined these radiographs and CBCT images according to pre-established scores, which were later checked against the signs and symptoms. Results. The results revealed statistical difference for cone-beam volumetric tomography compared with conventional radiographs in the diagnosis of root fractures. Conclusion. It could be concluded that cone-beam volumetric tomography was better than conventional radiography in the diagnosis of root fractures, thereby constituting an excellent alternative for diagnosis in general practice. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 108: 270-277)
Resumo:
Objectives: To evaluate the influence of JPEG quality factors 100, 80 and 60 on the reproducibility of identification of cephalometric points on images of lateral cephalograms, compared with the Digital Imaging and Communications in Medicine (DICOM) format. Methods: The sample was composed of 30 images of digital lateral cephalograms obtained from 30 individuals (15 males and 15 females) on a phosphor plate system in DICOM format. The images were converted to JPEG with quality factors 100, 80 and 60 with the aid of software, adding up to 90 images. The 120 images (DICOM, JPEG 100, 80 and 60) were blinded and 12 cephalometric points were identified on each image by three calibrated orthodontists, using the x-y coordinate system, on a cephalometric software. Results: The results revealed that identification of cephalometric points was highly reproducible, except for the point Orbitale (Or) on the x-axis. The different file formats did not present a statistically significant difference. Conclusions: JPEG images of lateral cephalograms with quality factors 100, 80 and 60 did not present alterations in the reproducibility of identification of cephalometric points compared with the DICOM format. Good reproducibility was achieved for the 12 points, except for point Or on the x-axis. Dentomaxillofacial Radiology (2009) 38, 393-400. doi: 10.1259/dmfr/40996636
Resumo:
Two series of lanthanide oxides with different morphologies were synthesized through calcinations of two types of citrate polymeric precursors. These oxides were characterized by XRD patterns, SEM electronic microscopy, and N(2) adsorption isotherms. SEM microscopy analysis showed that the calcination of crystalline fibrous precursors [Ln(2)(LH)(3)center dot 2H(2)O] (L = citrate) originated fibrous shaped particles. On the other hand, the calcination of irregular shaped particles of precursors [LnL center dot xH(2)O] originated irregular shaped particles of oxide, pointing out a morphological template effect of precursors on the formation of the respective oxides.
Resumo:
The Southwest region of the Bahia state in Brazil hosts the largest uranium reserve of the country (100 kton in uranium, only), plus the cities of Caetite, Lagoa Real and Igapora. In this work, aim was at the investigation of uranium burdens on residents of these cities by using teeth as bioindicators, as a contribution for possible radiation protection measures. Thus, a total of 41 human teeth were collected, plus 50 from an allegedly uranium free area (the control region). Concentrations of uranium in teeth from residents of 5- to 87-y old were determined by means of a high-resolution inductively coupled plasma mass spectrometer (ICP-MS). The highest uranium concentration in teeth was measured from samples belonging to residents of Caetite (median equal to 16 ppb). Assuming that the uranium concentrations in teeth and bones are similar within 10-20% (for children and young adults), it concluded that uranium body levels in residents of Caetite are at least one order of magnitude higher than the worldwide average. This finding led to conclude that daily ingestion of uranium, from food and water, is equally high.
Resumo:
In medical processes where ionizing radiation is used, dose planning and dose delivery are the key elements to patient safety and treatment success, particularly, when the delivered dose in a single session of treatment can be an order of magnitude higher than the regular doses of radiotherapy. Therefore, the radiation dose should be well defined and precisely delivered to the target while minimizing radiation exposure to surrounding normal tissues [1]. Several methods have been proposed to obtain three-dimensional (3-D) dose distribution [2, 3]. In this paper, we propose an alternative method, which can be easily implemented in any stereotactic radiosurgery center with a magnetic resonance imaging (MRI) facility. A phantom with or without scattering centers filled with Fricke gel solution is irradiated with Gamma Knife(A (R)) system at a chosen spot. The phantom can be a replica of a human organ such as head, breast or any other organ. It can even be constructed from a real 3-D MR image of an organ of a patient using a computer-aided construction and irradiated at a specific region corresponding to the tumor position determined by MRI. The spin-lattice relaxation time T (1) of different parts of the irradiated phantom is determined by localized spectroscopy. The T (1)-weighted phantom images are used to correlate the image pixels intensity to the absorbed dose and consequently a 3-D dose distribution with a high resolution is obtained.
Resumo:
A time efficient optical model is proposed for GATE simulation of a LYSO scintillation matrix coupled to a photomultiplier. The purpose is to avoid the excessively long computation time when activating the optical processes in GATE. The usefulness of the model is demonstrated by comparing the simulated and experimental energy spectra obtained with the dual planar head equipment for dosimetry with a positron emission tomograph ( DoPET). The procedure to apply the model is divided in two steps. Firstly, a simplified simulation of a single crystal element of DoPET is used to fit an analytic function that models the optical attenuation inside the crystal. In a second step, the model is employed to calculate the influence of this attenuation in the energy registered by the tomograph. The use of the proposed optical model is around three orders of magnitude faster than a GATE simulation with optical processes enabled. A good agreement was found between the experimental and simulated data using the optical model. The results indicate that optical interactions inside the crystal elements play an important role on the energy resolution and induce a considerable degradation of the spectra information acquired by DoPET. Finally, the same approach employed by the proposed optical model could be useful to simulate a scintillation matrix coupled to a photomultiplier using single or dual readout scheme.
Resumo:
The quality control optimization of medical processes that use ionizing radiation in the treatment of diseases like cancer is a key element for patient safety and success of treatment. The major medical application of radiation is radiotherapy, i.e. the delivery of dose levels to well-defined target tissues of a patient with the purpose of eliminating a disease. The need of an accurate tumour-edge definition with the purpose of preserving healthy surrounding tissue demands rigorous radiation treatment planning. Dosimetric methods are used for dose distribution mapping region of interest to assure that the prescribed dose and the irradiated region are correct. The Fricke gel (FXG) is the main dosimeter that supplies visualization of the three-dimensional (3D) dose distribution. In this work the dosimetric characteristics of the modified Fricke dosimeter produced at the Radiation Metrology Centre of the Institute of Energetic and Nuclear Research (IPEN) such as gel concentration dose response dependence, xylenol orange addition influence, dose response between 5 and 50Gy and signal stability were evaluated by magnetic resonance imaging (MRI). Using the same gel solution, breast simulators (phantoms) were shaped and absorbed dose distributions were imaged by MRI at the Nuclear Resonance Laboratory of the Physics Institute of Sao Paulo University. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
A survey of pediatric radiological examinations was carried out in a reference pediatric hospital of the city of Sao Paulo. in order to investigate the doses to children undergoing conventional X-ray examinations. The results showed that the majority of pediatric patients are below 4 years, and that about 80% of the examinations correspond to chest projections. Doses to typical radiological examinations were measured in vivo with thermoluminescent dosimeters (LiF: Mg, Ti and LiF: Mg, Cu, P) attached to the skin of the children to determine entrance surface dose (ESD). Also homogeneous phantoms were used to obtain ESD to younger children, because the technique uses a so small kVp that the dosimeters would produce an artifact image in the patient radiograph. Four kinds of pediatric examinations were investigated: three conventional examinations (chest, skull and abdomen) and a fluoroscopic procedure (barium swallow). Relevant information about kVp and mAs values used in the examinations was collected, and we discuss how these parameters can affect the ESD. The ESD values measured in this work are compared to reference levels published by the European Commission for pediatric patients. The results obtained (third-quartile of the ESD distribution) for chest AP examinations in three age groups were: 0.056 mGy (2-4 years old); 0,068 mGy (5-9 years old)-. 0.069 mGy (10-15 years old). All of them are below the European reference level (0.100mGy). ESD values measured to the older age group in skull and abdomen AP radiographs (mean values 3.44 and 1.20mGy, respectively) are above the European reference levels (1.5mGy to skull and 1.0 mGy to abdomen). ESD values measured in the barium swallow examination reached 10 mGy in skin regions corresponding to thyroid and esophagus. It was noticed during this survey that some technicians use, improperly, X-ray fluoroscopy in conventional examinations to help them in positioning the patient. The results presented here are a preliminary survey of doses in pediatric radiological examinations and they show that it is necessary to investigate the technical parameters to perform the radiographs. to introduce practices to control pediatric patient`s doses and to improve the personnel training to perform a pediatric examination. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The thermoluminescence (TL) peak in natural sodalite near 230 degrees C which appears only after submitted to thermal treatments and to gamma irradiation has been studied in parallel with electron paramagnetic resonance (EPR) spectrum appearing under the same procedure This study revealed a full correlation between the 230 degrees C TL peak and the eleven hyperfine lines from EPR spectrum In both case the centers disappear at the same temperature and are restored after gamma irradiation A complete model for the 230 C TL peak is presented and discussed In addition to the correlation and TL model specific characteristics of the TL peaks are described (C) 2010 Elsevier B V All rights reserved
Resumo:
Terbium (Tb) doped LaMgAl(11)O(19) phosphors have been prepared by the combustion of corresponding metal nitrates (oxidizer) and urea (fuel) at furnace temperature as low as 500 C Combustion synthesized powder phosphor was characterized by X-ray diffraction and field emission scanning electron microscopy techniques LaMgAl(11)O(19) doped with trivalent terbium ions emit weakly in blue and orange light region and strongly in green light region when excited by the ultraviolet light of 261 nm Electron Spin Resonance (ESR) studies were carried out to study the defect centres Induced in the phosphor by gamma irradiation and also to identify the defect centres responsible for the thermally stimulated luminescence (TSL) process Room temperature ESR spectrum of irradiated phosphor appears to be a superposition of at least two defect centres One of the centres (centre I) with principal g-values g(parallel to) = 2 0417 and g(perpendicular to) = 2 0041 is identified as O(2)(-) ion while centre II with an axially symmetric g-tensor with principal values g(parallel to) = 19698 and g(perpendicular to) = 1 9653 is assigned to an F(+) centre (singly ionized oxygen vacancy) An additional defect centre is observed during thermal annealing experiments and this centre (assigned to F(+) centre) seems to originate from an F centre (oxygen vacancy with two electrons) The F centre and also the F+ centre appear to correlate with the observed high temperature TSL peak in LaMgAl(11)O(19) Tb phosphor (C) 2010 Elsevier Masson SAS All rights reserved
Resumo:
110 degrees C thermoluminescence (TL) peak in quartz is well known due to its pre-dose effect, which is used in dating technique. The generally accepted mechanism for the production of this peak is based on Ge impurity contained in quartz. Its role is to substitute for Si in SiO(4) tetrahedron and under irradiation gives rise to [GeO(4)/e(-)](-) electron centre. Heating for TL read out liberates electron that recombines with hole in [AlO(4)/h]degrees or [H(3)O(4)/h]degrees centres emitting photon. The investigation, carried out on blue quartz, green quartz, black quartz, pink quartz, red quartz, sulphurous quartz, milky quartz, alpha quartz and synthetic quartz, has shown that the 110 degrees C TL peak in all these varieties of quartz has no correlation with the respective Ge content. Electron paramagnetic resonance (EPR) measurements on any of these varieties of quartz revealed a signal with g(1) = 2.0004, g(2) = 1.9986 and g(3) = 1.974 and this signal does not appear to correspond to any known EPR signals in alpha quartz. Furthermore, isothermal decay measurements are carried out on the above mentioned EPR signal and 110 degrees C TL peak in alpha, blue and green quartz. A close correlation has been observed in the decay behavior. A new mechanism is proposed based on an interstitial O(-) centre. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Grossular is one of six members of silicate Garnet group. Two samples GI and GII have been investigated concerning their luminescence thermally stimulated (TL). EPR and optical absorption and the measurements were carried out to find out whether or not same point defects are responsible for all three properties. Although X-rays diffraction analysis has shown that both GI and GII have practically the same crystal structure of a standard grossular crystal, they presented different behavior in many aspects. The TL glow curve shape, TL response to radiation dose, the effect of annealing at high temperatures before irradiation, the dependence of UV bleaching parameters on peak temperature, all of them differ going from GI to GII. The EPR signals around g = 2.0 as well as at g = 4.3 and 6.0 have much larger intensity in GI than in GII. Very high temperature (> 800 degrees C annealing causes large increase in the bulk background absorption in GI, however, only very little in GII. In the cases of EPR and optical absorption, the difference in their behavior can be attributed to Fe3+ ions; however, in the TL case one cannot and the cause was not found as yet. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Diopside, a natural silicate mineral of formula CaMgSi2O6, has been investigated concerning its thermoluminescence (TL) and electron paramagnetic resonance (EPR) properties. Glow curves and TL vs. gamma-dose were obtained irradiating natural samples to additional dose varying from 50 to 10,000Gy. Except for a 410 degrees C peak found in the Al-doped artificial diopside, all the other peaks grow linearly with radiation dose, but saturate beyond -1 kGy. To investigate high-temperature effect before irradiation, measurements of TL intensity in samples annealed at 500-900 degrees C and then irradiated to I kGy gamma-dose were carried out. Also the TL emission spectrum has been obtained. To compare with natural diopside, a synthetic pure polycrystal was produced and further those doped with iron, aluminum and manganese were also produced. (c) 2007 Elsevier B.V. All rights reserved.