227 resultados para SURFACE RESPONSE
Resumo:
Surface-enhanced Raman scattering (SERS) spectra of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) was obtained by employing a bi-layer gold substrate, assembled by the reduction of Au(III) over gold-seeded nanoparticles immobilized on functionalized glass substrates. The SERS signal was linear with the logarithm of the solution concentrations between 1.0 x 10(-7) mol L(-1) and 1.0 x 10(-3) mol L(-1), indicating that the bi-layer gold substrate affords a significant dynamic range for SERS, providing an excellent analytical response within this concentration range, and revealing the high sensitivity of the gold surface towards such analyte. In addition, using the same gold substrate, a similar calibration curve was obtained for crystal-violet (CV), and it was possible to identify the concentration limit corresponding to the transition from the average SERS to the nonlinear SERS response. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Instead of a time-invariant voltammetric profile, many electrochemical systems display a cycle-dependent current-potential response. This phenomenon has been referred to as complex voltammetric response and it has been observed during the electro-oxidation of several molecules such as methanol, ethanol, propanol and hydrogen. There are currently two explanations for the surface mechanism underlying this behavior. In one scenario, the complex voltammogram would result from the specific kinetic pathway taken during the forward sweep. In the other explanation, the phenomenon is discussed in terms of the interplay among the surface roughening and subsequent relaxation, and the ohmic drop coupled to a negative differential resistance. We report in this paper a nanogravimetric investigation of the complex voltammetric response in the electro-oxidation of methanol on platinum electrode in both acidic and alkaline media. Different periodic patterns composed of intercalated small and large hysteresis cycles were observed as a function of the applied voltage and the series resistance between the working electrode and the potentiostat. Independently, nanogravimetric results indicated no detectable difference in the delta-frequency versus voltage profile between small and large hysteresis cycles. These findings were interpreted as experimental evidence of the secondary, if any, role played by the very electrochemical reaction on the emergence of complex voltammetric response. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Among the different properties that influence bone apposition around implants, the chemical or biochemical composition of implant surface may interfere on its acceptance by the surrounding bone. The aim of this study was to investigate if a biofunctionalization of implant surface influences the bone apposition in a dog model and to compare it with other surfaces, such as a microstructured created by the grit-blasting/acid-etching process. Eight young adult male mongrel dogs had the bilateral mandibular premolars extracted and each one received 6 implants after 12 weeks, totaling 48 implants in the experiment. Four groups of implants were formed with the same microrough topography with or without some kind of biofunctionalization treatment. After histomorphometric analysis, it was observed that the modified microstructured surface with a "low concentration of the bioactive peptide" provided a higher adjacent bone density (54.6%) when compared to the other groups (microstructured + HA coating = 46.0%, microstructured only = 45.3% and microstructured + "high concentration of the bioactive peptide" = 40.7%), but this difference was not statistically significant. In conclusion, biofunctionalization of the implant surface might interfere in the bone apposition around implants, especially in terms of bone density. Different concentrations of bioactive peptide lead to different results.
Resumo:
This study evaluated the response of the subcutaneous connective tissue of BALB/c mice to root filling materials indicated for primary teeth: zinc oxide/eugenol cement (ZOE), Calen paste thickened with zinc oxide (Calen/ZO) and Sealapex sealer. The mice (n=102) received polyethylene tube implants with the materials, thereby forming 11 groups, as follows: I, II, III: Calen/ZO for 7, 21 and 63 days, respectively; IV, V, VI: Sealapex for 7, 21 and 63 days, respectively; VII, VIII, IX: ZOE for 7, 21 and 63 days, respectively; X and XI: empty tube for 7 and 21 days, respectively. The biopsied tissues were submitted to histological analysis (descriptive analysis and semi-quantitative analysis using a scoring system for collagen fiber formation, tissue thickness and inflammatory infiltrate). A quantitative analysis was performed by measuring the area and thickness of the granulomatous reactionary tissue (GRT). Data were analyzed by Kruskal-Wallis, ANOVA and Tukey's post-hoc tests (?=0.05). There was no significant difference (p>0.05) among the materials with respect to collagen fiber formation or GRT thickness. However, Calen/ZO produced the least severe inflammatory infiltrate (p<0.05). The area of the GRT was significantly smaller (p<0.05) for Calen/ZO and Sealapex. In conclusion, Calen/ZO presented the best tissue reaction, followed by Sealapex and ZOE.
Resumo:
This study was evaluated the response of subcutaneous connective tissue of isogenic mice to calcium hydroxide-based pastes with chlorhexidine digluconate (CHX). Seventy isogenic male BALB/c mice aged 6-8 weeks and weighing 15-20 g were randomly assigned to 8 groups. The animals received polyethylene tube implants as follows: Groups I, II, and III (n=10) - Calen® paste mixed with 0.4% CHX (experimental paste; Calen/CHX) for 7, 21, and 63 days, respectively; Groups IV, V, and VI (n=10) - UltraCal™ paste mixed with 2% CHX (experimental paste supplied by Ultradent Products Inc.; Ultracal/CHX) for 7, 21, and 63 days, respectively; and Groups VII and VIII (n=5): empty tube for 7 and 21 days, respectively. At the end of the experimental periods, the implants were removed together with the surrounding tissues (skin and subcutaneous connective tissue). The biopsied tissues were subjected to routine processing for histological analysis. Using a descriptive analysis and a four-point (0-3) scoring system, the following criteria were considered for qualitative and quantitative analysis of the tissue around the implanted materials: collagen fiber formation, tissue thickness and inflammatory infiltrate. A quantitative analysis was performed by measuring the thickness (µm), area (µm²) and perimeter (µm) of the reactionary granulomatous tissue formed at the tube ends. Data were analyzed statistically by the Kruskal-Wallis test and Dunn's post-test (α=0.05). Calen/CHX showed biocompatibility with the subcutaneous and reactionary tissues, with areas of discrete fibrosis and normal conjunctive fibrous tissue, though without statistically significant difference (p>0.05) from the control groups. In Groups I to III, there was a predominance of score 1, while in Groups IV to VI scores 2 and 3 predominated for all analyzed parameters. UltraCal/CHX, on the other hand, induced the formation of an inflammatory infiltrate and abundant exudate, suggesting a persistent residual aggression from the material, even 63 days after implant placement. In conclusion, the Calen paste mixed with 0.4% CHX allowed an adequate tissue response, whereas the UltraCal paste mixed with 2% CHX showed unsatisfactory results.
Resumo:
Dentin hypersensitivity (DH) is a painful response to stimulus applied to the open dentinal tubules of a vital tooth. It's a common oral condition, however, without an ideal treatment available yet. This work evaluated in vitro the effect of micron-sized particles from a novel bioactive glass-ceramic (Biosilicate) in occluding open dentinal tubules. A dentin disc model was employed to observe comparatively, using scanning electron microscopy (SEM), dentinal tubule occlusion by different products and deposition of hydroxyl carbonate apatite (HCA) on dentin surface by Biosilicate, after a single application: G1 - Dentifrice with potassium nitrate and fluoride; G2 - Two-step calcium phosphate precipitation treatment; G3 - Water-free gel containing Biosilicate particles (1%); G4 - Biosilicate particles mixed with distilled water in a 1:10 ratio; all of them after 1, 12 and 24 hours of immersion in artificial saliva. Fourier transform infrared spectroscopy (FTIR) was performed to detect HCA formation on dentin discs filled with Biosilicate after 2 minutes, 30 minutes and 12 hours of immersion in artificial saliva. SEM showed a layer of HCA formed on dentin surface after 24 hours by G4. G1, G2 and G3 promoted not total occlusion of open dentinal tubules after 24 hours. FTIR showed HCA precipitation on the dentin surface induced by Biosilicate after 30 minutes. The micron-sized particles from the bioactive glass-ceramic thus were able to induce HCA deposition in open dentinal tubules in vitro. This finding suggests that Biosilicate may provide a new option for treating DH.
Resumo:
Noncarious cervical lesions (NCCLs) are considered to be of multifactorial origin, normally associated with inadequate brushing. This study assessed the influence in vitro of simulated brushing on NCCL formation. Fifteen human premolars were submitted to brushing in the cementoenamel junction region, using hard-, medium- and soft-bristled brushes associated with a toothpaste of medium abrasiveness under a 200 g load, at a speed of 356 rpm for 100 minutes. The surface topography of the region was analyzed before and after brushing, by means of a laser interferometer, using "cut-off" values of 0.25 and considering roughness values in mm. The initial roughness (mm) results for dentin (D / bristle consistency: 1 - soft, 2 - medium and 3 - hard) were as follows: (D1) 1.25 ± 0.45; (D2) 1.12 ± 0.44; (D3) 1.05 ± 0.41. For enamel (E / bristle consistency: 1 - soft, 2 - medium and 3 - hard), the initial results were: (E1) 1.18 ± 0.35; (E2) 1.32 ± 0.25; (E3) 1.50 ± 0.38. After brushing, the following were the values for dentin: (D1) 2.32 ± 1.99; (D2) 3.30 ± 0.96; (D3) Over 500. For enamel, the values after brushing were: (E1) 1.37 ± 0.31; (E2) 2.15 ± 0.90; (E3) 1.22 ± 0.47. Based on the results of the ANOVA and Tukey statistical analyses (a = .05) it was concluded that soft, medium and hard brushes are not capable of abrading enamel, whereas dentin showed changes in surface roughness by the action of medium- and hard-bristled brushes.
Resumo:
Removable partial dentures (RPD) demand specific hygienic cleaning and the combination of brushing with immersion in chemical solutions has been the most recommended method for control of biofilm. However, the effect of the cleansers on metallic components has not been widely investigated. This study evaluated the effect of different cleansers on the surface of RPD. Five disc specimens (12 mm x 3 mm metallic disc centered in a 38 x 18 x 4 mm mould filled with resin) were obtained for each experimental situation: 6 solutions [Periogard (PE), Cepacol (CE), Corega Tabs (CT), Medical Interporous (MI), Polident (PO), 0.05% sodium hypochlorite (NaOCl), and distilled water (DW) control] and 2 Co-Cr alloys [DeguDent (DD) and VeraPDI (VPDI)] were used for each experimental situation. A 180-day immersion was simulated and the measurements of roughness (Ra, µm) of metal and resin were analyzed using 2-way ANOVA and Tukey’s test. The surface changes and tarnishes were examined with a scanning electronic microscopy (SEM). In addition, energy dispersive x-ray spectrometry (EDS) analysis was carried out at representative areas. Visually, NaOCl and MI specimens presented surface tarnishes. The roughness of materials was not affected by the solutions (p>0.05). SEM images showed that NaOCl and MI provided surface changes. EDS analysis revealed the presence of oxygen for specimens in contact with both MI and NaOCl solutions, which might suggest that the two solutions promoted the oxidation of the surfaces, thus leading to spot corrosion. Within the limitations of this study, it may be concluded that the NaOCl and MI may not be suitable for cleaning of RPD.
Resumo:
This study evaluated the effects of fluoride-containing solutions on the surface of commercially pure titanium (CP Ti) obtained by casting. CP Ti specimens were fabricated and randomly assigned to 5 groups (n=10): group 1: stored in distilled water at 37 ± 1ºC; group 2: stored in distilled water at 37 ± 1ºC and daily immersed in 0.05% NaF for 3 min; group 3: stored in distilled water at 37 ± 1ºC and daily immersed in 0.2% NaF for 3 min; group 4: stored in distilled water at 37 ± 1ºC; and immersed in 0.05% NaF every 15 days for 3 min; and group 5: stored in distilled water at 37 ± 1ºC and immersed in 0.2% NaF every 15 days for 3 min. Surface roughness was measured with a profilometer immediately after metallographic polishing of the specimens (T0) and at 15-day intervals until completing 60 days of experiment (T15, T30, T45, T60). Data were analyzed statistically by ANOVA and Tukey's test (α=0.05). There was no statistically significant difference (p>0.05) in surface roughness among the solutions. In conclusion, fluoride-containing solutions (pH 7.0) used as mouthwashes do not damage the surface of cast CP Ti and can be used by patients with titanium-based restorations.
Resumo:
This study evaluated the influence of a cola-type soft drink and a soy-based orange juice on the surface and subsurface erosion of primary enamel, as a function of the exposure time. Seventy-five primary incisors were divided for microhardness test (n=45) or scanning electron microscopy (SEM) analysis (n=30). The specimens were randomly assigned to 3 groups: 1 - artificial saliva (control); 2 - cola-type soft drink; and 3 - soy-based orange juice. Immersion cycles in the beverages were undertaken under agitation for 5 min, 3 times a day, during 60 days. Surface microhardness was measured at 7, 15, 30, 45 and 60 days. After 60 days, specimens were bisected and subsurface microhardness was measured at 30, 60, 90, 120, 150 and 200 µm from the surface exposed. Data were analyzed by ANOVA and Tukey’s test (a=0.05). Groups 2 and 3 presented similar decrease of surface microhardness. Regarding subsurface microhardness, group 2 presented the lowest values. SEM images revealed that after 60 days the surfaces clearly exhibited structural loss, unlike those immersed in artificial saliva. It may be concluded that erosion of the surfaces exposed to the cola-type soft drink was more accentuated and directly proportional to the exposure time.
Resumo:
This study evaluated the effect of surface sealant on the translucency of composite resin immersed in different solutions. The study involved the following materials: Charisma, Fortify and coffee, Coca-Cola®, tea and artificial saliva as solutions. Sixty-four specimens (n = 8) were manufactured and immersed in artificial saliva at 37 ± 1 °C. Samples were immersed in the solutions for three times a day and re-immersed in artificial saliva until the translucency readings. The measurements were carried out at nine times: T1 - 24 hours after specimen preparation, T2 - 24 hours after immersion in the solutions, T3 - 48 hours and T4 to T9 - 7, 14, 21, 30, 60 and 90 days, respectively, after immersion. The translucency values were measured using a JOUAN device. The results were subjected to ANOVA and Tukey's test at 5%. The surface sealant was not able to protect the composite resin against staining, the coffee showed the strongest staining action, followed by tea and regarding immersion time, a significant alteration was noted in the translucency of composite resin after 21 days.
Resumo:
OBJECTIVE: To assess microleakage in conservative class V cavities prepared with aluminum-oxide air abrasion or turbine and restored with self-etching or etch-and-rinse adhesive systems. Materials and Methods: Forty premolars were randomly assigned to 4 groups (I and II: air abrasion; III and IV: turbine) and class V cavities were prepared on the buccal surfaces. Conditioning approaches were: groups I/III - 37% phosphoric acid; groups II/IV - self-priming etchant (Tyrian-SPE). Cavities were restored with One Step Plus/Filtek Z250. After finishing, specimens were thermocycled, immersed in 50% silver nitrate, and serially sectioned. Microleakage at the occlusal and cervical interfaces was measured in mm and calculated by a software. Data were subjected to ANOVA and Tukey's test (α=0.05). RESULTS: Marginal seal provided by air abrasion was similar to high-speed handpiece, except for group I. There was SIGNIFICANT difference between enamel and dentin/cementum margins for to group I and II: air abrasion. The etch-and-rinse adhesive system promoted a better marginal seal. At enamel and dentin/cementum margins, the highest microleakage values were found in cavities treated with the self-etching adhesive system. At dentin/cementum margins, high-speed handpiece preparations associated with etch-and-rinse system provided the least dye penetration. CONCLUSION: Marginal seal of cavities prepared with aluminum-oxide air abrasion was different from that of conventionally prepared cavities, and the etch-and-rinse system promoted higher marginal seal at both enamel and dentin margins.
Resumo:
PURPOSE: This study evaluated the inflammatory reaction caused by the implantation of iodoform and calcium hydroxide in the back of rats. These drugs may be used as intracanal dressings to eliminate residual bacteria of the root canal system. METHODS: Twenty albinic rats (Rattus norvegicus, var Wistar) were divided into four groups: control group 1 (CG1) had normal skin; control group 2 (CG2) had wounded tissue without drugs; in groups 3 and 4, iodoform (IG) and calcium hydroxide (CHG) were inserted into the wounds, respectively. After 3, 5 and 11 days, slices of the implanted areas were macroscopically and microscopically observed regarding to their qualitative and quantitative aspects. RESULTS: In the macroscopical analysis, the CHG showed a large area of necrosis and swelling, which progressively decreased; in the IG the presence of iodoform surrounded by normal tissue was observed. The qualitative and quantitative histological analysis showed that IG promoted a shorter delay in the inflammatory response than the CHG. CONCLUSION: The inflammatory reaction for iodoform had a peak period five days after the drug insertion. By comparison, calcium hydroxide showed a very large area of necrosis that could only be partially eliminated after eleven days.
Resumo:
This study investigated the influence of bioactive materials on the dentin surface whitened. MATERIAL AND METHODS: Three bovine teeth were shaped into three dentin wafers. Each wafer was then sectioned, into six dentin slices. One slice from each tooth was distributed into one of 6 groups: 1.CG = control group (distilled water); 2.WT = whitening treatment; 3.WT + MI Paste Plus, applied once a day; 4.WT + Relief ACP30, applied once a day for 30 mintes; 5.WT + Relief ACP60, applied once a day for 60 minutes; 6.WT + Biosilicate®, applied once a week. All groups were treated over 14 days. RESULTS: CG presented all dentinal tubules occluded by smear layer; WT group was observed all dentinal tubules opened. In the groups 3, 4 and 6, tubules were occluded. Group 5, dentinal tubules were completely occluded by mineral deposits. CONCLUSION: The use of bioactive materials immediately after whitening treatment can reduce or even avoid the demineralization effect of whitening and avoid exposing dentinal tubules.
Resumo:
The use of composite resins in dentistry is well accepted for restoring anterior and posterior teeth. Many polishing protocols have been evaluated for their effect on the surface roughness of restorative materials. This study compared the effect of different polishing systems on the surface roughness of microhybrid composites. Thirty-six specimens were prepared for each composite $#91;Charisma® (Heraeus Kulzer), Fill Magic® (Vigodent), TPH Spectrum® (Dentsply), Z100® (3M/ESPE) and Z250® (3M/ESPE)] and submitted to surface treatment with Enhance® and PoGo® (Dentsply) points, sequential Sof-Lex XT® aluminum oxide disks (3M/ESPE), and felt disks (TDV) combined with Excel® diamond polishing paste (TDV). Average surface roughness (Ra) was measured with a mechanical roughness tester. The data were analyzed by two-way ANOVA with repetition of the factorial design and the Tukey-Kramer test (p<0.01). The F-test result for treatments and resins was high (p<0.0001 for both), indicating that the effect of the treatment applied to the specimen surface and the effect of the type of resin on surface roughness was highly significant. Regarding the interaction between polishing system and type of resin used, a p value of 0.0002 was obtained, indicating a statistically significant difference. A Ra of 1.3663 was obtained for the Sof-Lex/TPH Spectrum interaction. In contrast, the Ra for the felt disk+paste/Z250 interactions was 0.1846. In conclusion, Sof-Lex polishing system produced a higher surface roughness on TPH Spectrum resin when compared to the other interactions.