85 resultados para SPIN-LABELED GRAMICIDIN
Resumo:
In this work, pyrolysis-molecular beam mass spectrometry analysis coupled with principal components analysis and (13)C-labeled tetramethylammonium hydroxide thermochemolysis were used to study lignin oxidation, depolymerization, and demethylation of spruce wood treated by biomimetic oxidative systems. Neat Fenton and chelator-mediated Fenton reaction (CMFR) systems as well as cellulosic enzyme treatments were used to mimic the nonenzymatic process involved in wood brown-rot biodegradation. The results suggest that compared with enzymatic processes, Fenton-based treatment more readily opens the structure of the lignocellulosic matrix, freeing cellulose fibrils from the matrix. The results demonstrate that, under the current treatment conditions, Fenton and CMFR treatment cause limited demethoxylation of lignin in the insoluble wood residue. However, analysis of a water-extractable fraction revealed considerable soluble lignin residue structures that had undergone side chain oxidation as well as demethoxylation upon CMFR treatment. This research has implications for our understanding of nonenzymatic degradation of wood and the diffusion of CMFR agents in the wood cell wall during fungal degradation processes.
Resumo:
The thermoelastic properties of ferropericlase Mg(1-x)Fe(x)O (x = 0.1875) throughout the iron high-to-low spin cross-over have been investigated by first principles at Earth`s lower mantle conditions. This cross-over has important consequences for elasticity such as an anomalous bulk modulus (K(S)) reduction. At room temperature the anomaly is somewhat sharp in pressure but broadens with increasing temperature. Along a typical geotherm it occurs across most of the lower mantle with a more significant K(S) reduction at approximate to 1,400-1,600 km depth. This anomaly might also cause a reduction in the effective activation energy for diffusion creep and lead to a viscosity minimum in the mid-lower mantle, in apparent agreement with results from inversion of data related with mantle convection and postglacial rebound.
Resumo:
Synthetic somatostatin (SST) analogues have been used in the preparation of receptor-specific radiopharmaceuticals for diagnostic and therapy of neuroendocrine tumors. This work studied the labeling conditions with (99m)Tc and biological distribution in Swiss mice of two SST analogs (HYNIC-Tyr(3)-Octreotide and HYNIC-Tyr(3)-Octreotate) and compared the biodistribution pattern with (111)In-DTPA-Octreotide. Biological distribution studies were performed after injection of radiopharmaceuticals on Swiss mice. Labeling procedures resulted on high radiochemical yield for all three preparations and the labeled products presented high in vitro stability. Biological distribution studies evidenced similar general biodistribution of (99m)Tc-labeled peptides when compared with indium-labeled peptide with fast blood clearance and elimination by urinary tract. Kidneys uptake of (99m)Tc-HYNIC-TATE are similar to (111)In-DTPA-Octreotide, and both are significantly higher than (99m)Tc-HYNIC-OCT. All labeled peptides presented similar uptake on liver, but the retention in time at intestines, particularly at large intestine, was more expressive for (111)In-labeled peptide. The %ID of (99m)Tc-HYNIC-OCT and (99m)Tc-HYNIC-TATE in organs with high density of SST receptors like pancreas and adrenals were significant and similar to obtained for (111)In-DTPA-Octreotide, confirming the affinity of these radiopharmaceuticals for the receptors.
Resumo:
Superparamagnetic iron oxide nanoparticles (SPIONs) are applied in stem cell labeling because of their high magnetic susceptibility as compared with ordinary paramagnetic species, their low toxicity, and their ease of magnetic manipulation. The present work is the study of CD133(+) stem cell labeling by SPIONs coupled to a specific antibody (AC133), resulting in the antigenic labeling of the CD133+ stem cell, and a method was developed for the quantification of the SPION content per cell, necessary for molecular imaging optimization. Flow cytometry analysis established the efficiency of the selection process and helped determine that the CD133 cells selected by chromatographic affinity express the transmembrane glycoprotein CD133. The presence of antibodies coupled to the SPION, expressed in the cell membrane, was observed by transmission electron microscopy. Quantification of the SPION concentration in the marked cells using the ferromagnetic resonance technique resulted in a value of 1.70 x 10 (13) mol iron (9.5 pg) or 7.0 x 10 (6) nanoparticles per cell ( the measurement was carried out in a volume of 2 mu L containing about 6.16 x 10 5 pg iron, equivalent to 4.5 x 10 (11) SPIONs). (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
The aim of this work is to provide a quantitative method for analysis of the concentration of superparamagnetic iron oxide nanoparticles (SPION), determined by means of ferromagnetic resonance (FMR), with the nanoparticles coupled to a specific antibody (AC133), and thus to express the antigenic labeling evidence for the stem cells C D133(+). The FMR efficiency and sensitivity were proven adequate for detecting and quantifying the low amounts of iron content in the C D133(+) cells (similar to 6.16 x 10(5) pg in the volume of 2 mu l containing 4.5 x 1011 SPION). The quantitative method led to the result of 1.70 x 10(-13) mol of Fe (9.5 pg), or 7.0 x 10(6) nanoparticles per cell. For the quantification analysis via the FMR technique it was necessary to carry out a preliminary quantitative visualization of iron oxide-labeled cells in order to ensure that the nanoparticles coupled to the antibodies are indeed tied to the antigen at the stem cell surface and that the cellular morphology was conserved, as proof of the validity of this method. The quantitative analysis by means of FMR is necessary for determining the signal intensity for the study of molecular imaging by means of magnetic resonance imaging (MRI).
Resumo:
Introduction. The hippocampal formation is a specific structure in the brain where neurogenesis occurs throughout adulthood and in which the neuronal cell loss causes various demential states. The main goal of this study was to verify whether fetal neural progenitor cells (NPCs) from transgenic rats expressing green fluorescent protein (GFP) retain the ability to differentiate into neuronal cells and to integrate into the hippocampal circuitry after transplantation. Methods. NPCs were isolated from E14 (gestational age: 14 days postconception) transgenic-Lewis and wild-type Sprague-Dawley rat embryos. Wild-type and transgenic cells were expanded and induced to differentiate into a neuronal lineage in vitro. Immunocytochemical and electrophysiological analysis were performed in both groups. GFP-expressing cells were implanted into the hippocampus and recorded electrophysiologically 3 months thereafter. Immunohistochemical analysis confirmed neuronal differentiation, and the yield of neuronal cells was determined stereologically. Results. NPCs derived from wild-type and transgenic animals are similar regarding their ability to generate neuronal cells in vitro. Neuronal maturity was confirmed by immunocytochemistry and electrophysiology, with demonstration of voltage-gated ionic currents, firing activity, and spontaneous synaptic currents. GFP-NPCs were also able to differentiate into mature neurons after implantation into the hippocampus, where they formed functional synaptic contacts. Conclusions. GFP-transgenic cells represent an important tool in transplantation studies. Herein, we demonstrate their ability to generate functional neurons both in vitro and in vivo conditions. Neurons derived from fetal NPCs were able to integrate into the normal hippocampal circuitry. The high yield of mature neurons generated render these cells important candidates for restorative approaches based on cell therapy.
Resumo:
PURPOSE. The purpose of this study was to further assess the psychometric qualities of the Mini-Social Phobia Inventory (MS) to screen for social anxiety disorder (SAD). DESIGN AND METHODS. The MS and other self- and clinician-rated scales for anxiety and social anxiety were applied in 2,314 university students and in samples of SAD patients (n = 88) and nonpatients (n = 90). FINDINGS. The MS revealed adequate discriminative validity, internal consistency (alpha = 0.49-0.73), convergent validity with the Social Phobia Inventory, Brief Social Phobia Scale, and Self-Statements During Public Speaking Scale and convergent and divergent validity with the Beck Anxiety Inventory. PRACTICE IMPLICATIONS. The MS has shown to be a fast and efficient screening instrument for SAD in different cultures and contexts.
Resumo:
Lymphoscintigraphy is the technique of choice for sentinel lymph node detection in women with early breast cancer, but there is limited information evaluating the value of this technique in animals. We investigated mammary lymphatic drainage in 25 young female mongrel dogs by intramammary injection of 18.5 MBq of Tc-99m-dextran (70,000 Da). Lymph node anatomical referencing was obtained using an external marker, bone scintigraphy, or scintiscanning the body contour. Cranial and caudal thoracic mammary glands drained into the cranial sternal lymph node and axillary lymph center. The cranial thoracic mammary gland also drained into the superficial cervical lymph node in two of five animals. The cranial abdominal gland was drained by the axillary lymph center. The caudal abdominal mammary gland was drained by the superficial inguinal lymph node in all animals and simultaneously by medial iliac lymph nodes in four of five animals. In one dog, this mammary gland was also drained by the mediastinal and the superficial cervical lymph nodes. The inguinal mammary gland was drained by superficial inguinal lymph nodes and simultaneously via the medial iliac lymph node in one animal. Lymphatic communications between lymph nodes were identified in 11 of 25 (44%) animals. Tc-99m-dextran mammary lymphoscintigraphy was easy and rapid to perform and may provide valuable information for further studies.
Resumo:
Objective Underreporting of energy intake is prevalent in food surveys, but there is controversy about which dietary assessment method provides greater underreporting rates. Our objective is to compare validity of self-reported energy intake obtained by three dietary assessment methods with total energy expenditure (TEE) obtained by doubly labeled water (DLW) among Brazilian women. Design We used a cross-sectional study. Subjects/setting Sixty-five females aged 18 to 57 years (28 normal-weight, 10 over-weight, and 27 obese) were recruited from two universities to participate. Main outcome measures TEE determined by DLW, energy intake estimated by three 24-hour recalls, 3-day food record, and a food frequency questionnaire (FFQ). Statistical analyses performed Regression and analysis of variance with repeated measures compared TEE and energy intake values, and energy intake-to-TEE ratios and energy intake-TEE values between dietary assessment methods. Bland and Altman plots were provided for each method. chi(2) test compared proportion of underreporters between the methods. Results Mean TEE was 2,622 kcal (standard deviation [SD] =490 kcal), while mean energy intake was 2,078 kcal (SD=430 kcal) for the diet recalls; 2,044 kcal (SD=479 kcal) for the food record and 1,984 kcal (SD=832 kcal) for the FFQ (all energy intake values significantly differed from TEE; P<0.0001). Bland and Altman plots indicated great dispersion, negative mean differences between measurements, and wide limits of agreement. Obese subjects underreported more than normal-weight subjects in the diet recalls and in the food records, but not in the FFQ. Years of education, income and ethnicity were associated with reporting accuracy. Conclusions The FFQ produced greater under- and overestimation of energy intake. Underreporting of energy intake is a serious and prevalent error in dietary self-reports provided by Brazilian women, as has been described in studies conducted in developed countries.
Resumo:
Previous studies have shown that lipids are transferred from lymphocytes (Ly) to different cell types including macrophages. enterocytes, and pancreatic beta cells in co-culture This study investigated whether [(14)C]-labeled fatty acids (FA) can be transferred from Ly to skeletal muscle (SM), and the effects of exercise on such phenomenon Ly obtained from exercised (EX) and control (C) male Wistar rats were preloaded with the [(14)C]-labeled free FA palmitic (PA), oleic (OA), linoleic (LA), or arachidonic (AA) Radioactively loaded Ly were then co-cultured with SM from the same Ly donor animals Substantial amounts of FA were transferred to SM being the profile PA = OA > AA > LA to the C group. and PA > OA > LA > AA to the EX group These FA were incorporated predominantly as phospholipids (PA = 66 75%: OA = 63 09%, LA = 43 86%, AA - 47 40%) in the C group and (PA = 63 99% OA = 52 72%, LA = 55 99%, AA = 63 40%) in the EX group Also in this group, the remaining radioactivity from AA, LA, and OA acids was mainly incorpoiated in structural and energetic lipids These results support the hypothesis that Ly are able to export lipids to SM in co-culture Furthermore. exercise modulates the lipid transference profile, and its incorporation on SM The overall significance of this phenomenon in vivo remains to be elucidated. Copyright (C) 2010 John Wiley & Sons, Ltd
Resumo:
The NMR spin coupling parameters, (1)J(N,H) and (2)J(H,H), and the chemical shielding, sigma((15)N), of liquid ammonia are studied from a combined and sequential QM/MM methodology. Monte Carlo simulations are performed to generate statistically uncorrelated configurations that are submitted to density functional theory calculations. Two different Lennard-Jones potentials are used in the liquid simulations. Electronic polarization is included in these two potentials via an iterative procedure with and without geometry relaxation, and the influence on the calculated properties are analyzed. B3LYP/aug-cc-pVTZ-J calculations were used to compute the V(N,H) constants in the interval of -67.8 to -63.9 Hz, depending on the theoretical model used. These can be compared with the experimental results of -61.6 Hz. For the (2)J(H,H) coupling the theoretical results vary between -10.6 to -13.01 Hz. The indirect experimental result derived from partially deuterated liquid is -11.1 Hz. Inclusion of explicit hydrogen bonded molecules gives a small but important contribution. The vapor-to-liquid shifts are also considered. This shift is calculated to be negligible for (1)J(N,H) in agreement with experiment. This is rationalized as a cancellation of the geometry relaxation and pure solvent effects. For the chemical shielding, U(15 N) Calculations at the B3LYP/aug-pcS-3 show that the vapor-to-liquid chemical shift requires the explicit use of solvent molecules. Considering only one ammonia molecule in an electrostatic embedding gives a wrong sign for the chemical shift that is corrected only with the use of explicit additional molecules. The best result calculated for the vapor to liquid chemical shift Delta sigma((15)N) is -25.2 ppm, in good agreement with the experimental value of -22.6 ppm.
Resumo:
We describe the canonical and microcanonical Monte Carlo algorithms for different systems that can be described by spin models. Sites of the lattice, chosen at random, interchange their spin values, provided they are different. The canonical ensemble is generated by performing exchanges according to the Metropolis prescription whereas in the microcanonical ensemble, exchanges are performed as long as the total energy remains constant. A systematic finite size analysis of intensive quantities and a comparison with results obtained from distinct ensembles are performed and the quality of results reveal that the present approach may be an useful tool for the study of phase transitions, specially first-order transitions. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We introduce a Sherrington-Kirkpatrick spin-glass model with the addition of elastic degrees of freedom. The problem is formulated in terms of an effective four-spin Hamiltonian in the pressure ensemble, which can be treated by the replica method. In the replica-symmetric approximation, we analyze the pressure-temperature phase diagram, and obtain expressions for the critical boundaries between the disordered and the ordered (spin-glass and ferromagnetic) phases. The second-order para-ferromagnetic border ends at a tricritical point, beyond which the transition becomes discontinuous. We use these results to make contact with the temperature-concentration phase diagrams of mixtures of hydrogen-bonded crystals.
Resumo:
We study the thermodynamic properties and the phase diagrams of a multi-spin antiferromagnetic spherical spin-glass model using the replica method. It is a two-sublattice version of the ferromagnetic spherical p-spin glass model. We consider both the replica-symmetric and the one-step replica-symmetry-breaking solutions, the latter being the most general solution for this model. We find paramagnetic, spin-glass, antiferromagnetic and mixed or glassy antiferromagnetic phases. The phase transitions are always of second order in the thermodynamic sense, but the spin-glass order parameter may undergo a discontinuous change.
Resumo:
The magnetic structure of NiFe(2)O(4) nanoparticles has been investigated by means of Mossbauer spectra at T=4.2 K in applied fields up to 12 T. Four samples were studied, with mean particle diameters ranging from 4.3 to 8.9 nm. All spectra could be decomposed into three sextets, two corresponding to the ferrimagnetic sublattices of Fe ions in the spinel structure (core) and the third one to randomly frozen spins near the particle surface (shell). The shell thickness, calculated from the fraction of disordered spins, was found to be about one-third of the particle radius at H (app)=e0 and to decrease with the applied field toward a common limit of similar to 0.4 nm. The mean canting angle relative to the field was also found to decrease for increasing fields, at a rate inversely correlated to the particle size.