176 resultados para Ruin Probability
Resumo:
Thanks to recent advances in molecular biology, allied to an ever increasing amount of experimental data, the functional state of thousands of genes can now be extracted simultaneously by using methods such as cDNA microarrays and RNA-Seq. Particularly important related investigations are the modeling and identification of gene regulatory networks from expression data sets. Such a knowledge is fundamental for many applications, such as disease treatment, therapeutic intervention strategies and drugs design, as well as for planning high-throughput new experiments. Methods have been developed for gene networks modeling and identification from expression profiles. However, an important open problem regards how to validate such approaches and its results. This work presents an objective approach for validation of gene network modeling and identification which comprises the following three main aspects: (1) Artificial Gene Networks (AGNs) model generation through theoretical models of complex networks, which is used to simulate temporal expression data; (2) a computational method for gene network identification from the simulated data, which is founded on a feature selection approach where a target gene is fixed and the expression profile is observed for all other genes in order to identify a relevant subset of predictors; and (3) validation of the identified AGN-based network through comparison with the original network. The proposed framework allows several types of AGNs to be generated and used in order to simulate temporal expression data. The results of the network identification method can then be compared to the original network in order to estimate its properties and accuracy. Some of the most important theoretical models of complex networks have been assessed: the uniformly-random Erdos-Renyi (ER), the small-world Watts-Strogatz (WS), the scale-free Barabasi-Albert (BA), and geographical networks (GG). The experimental results indicate that the inference method was sensitive to average degree k variation, decreasing its network recovery rate with the increase of k. The signal size was important for the inference method to get better accuracy in the network identification rate, presenting very good results with small expression profiles. However, the adopted inference method was not sensible to recognize distinct structures of interaction among genes, presenting a similar behavior when applied to different network topologies. In summary, the proposed framework, though simple, was adequate for the validation of the inferred networks by identifying some properties of the evaluated method, which can be extended to other inference methods.
Resumo:
This article presents maximum likelihood estimators (MLEs) and log-likelihood ratio (LLR) tests for the eigenvalues and eigenvectors of Gaussian random symmetric matrices of arbitrary dimension, where the observations are independent repeated samples from one or two populations. These inference problems are relevant in the analysis of diffusion tensor imaging data and polarized cosmic background radiation data, where the observations are, respectively, 3 x 3 and 2 x 2 symmetric positive definite matrices. The parameter sets involved in the inference problems for eigenvalues and eigenvectors are subsets of Euclidean space that are either affine subspaces, embedded submanifolds that are invariant under orthogonal transformations or polyhedral convex cones. We show that for a class of sets that includes the ones considered in this paper, the MLEs of the mean parameter do not depend on the covariance parameters if and only if the covariance structure is orthogonally invariant. Closed-form expressions for the MLEs and the associated LLRs are derived for this covariance structure.
Resumo:
Context tree models have been introduced by Rissanen in [25] as a parsimonious generalization of Markov models. Since then, they have been widely used in applied probability and statistics. The present paper investigates non-asymptotic properties of two popular procedures of context tree estimation: Rissanen's algorithm Context and penalized maximum likelihood. First showing how they are related, we prove finite horizon bounds for the probability of over- and under-estimation. Concerning overestimation, no boundedness or loss-of-memory conditions are required: the proof relies on new deviation inequalities for empirical probabilities of independent interest. The under-estimation properties rely on classical hypotheses for processes of infinite memory. These results improve on and generalize the bounds obtained in Duarte et al. (2006) [12], Galves et al. (2008) [18], Galves and Leonardi (2008) [17], Leonardi (2010) [22], refining asymptotic results of Buhlmann and Wyner (1999) [4] and Csiszar and Talata (2006) [9]. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We consider the one-dimensional asymmetric simple exclusion process (ASEP) in which particles jump to the right at rate p is an element of (1/2, 1.] and to the left at rate 1 - p, interacting by exclusion. In the initial state there is a finite region such that to the left of this region all sites are occupied and to the right of it all sites are empty. Under this initial state, the hydrodynamical limit of the process converges to the rarefaction fan of the associated Burgers equation. In particular suppose that the initial state has first-class particles to the left of the origin, second-class particles at sites 0 and I, and holes to the right of site I. We show that the probability that the two second-class particles eventually collide is (1 + p)/(3p), where a collision occurs when one of the particles attempts to jump over the other. This also corresponds to the probability that two ASEP processes. started from appropriate initial states and coupled using the so-called ""basic coupling,"" eventually reach the same state. We give various other results about the behaviour of second-class particles in the ASEP. In the totally asymmetric case (p = 1) we explain a further representation in terms of a multi-type particle system, and also use the collision result to derive the probability of coexistence of both clusters in a two-type version of the corner growth model.
Resumo:
The dynamical discrete web (DyDW), introduced in the recent work of Howitt and Warren, is a system of coalescing simple symmetric one-dimensional random walks which evolve in an extra continuous dynamical time parameter tau. The evolution is by independent updating of the underlying Bernoulli variables indexed by discrete space-time that define the discrete web at any fixed tau. In this paper, we study the existence of exceptional (random) values of tau where the paths of the web do not behave like usual random walks and the Hausdorff dimension of the set of such exceptional tau. Our results are motivated by those about exceptional times for dynamical percolation in high dimension by Haggstrom, Peres and Steif, and in dimension two by Schramm and Steif. The exceptional behavior of the walks in the DyDW is rather different from the situation for the dynamical random walks of Benjamini, Haggstrom, Peres and Steif. For example, we prove that the walk from the origin S(0)(tau) violates the law of the iterated logarithm (LIL) on a set of tau of Hausdorff dimension one. We also discuss how these and other results should extend to the dynamical Brownian web, the natural scaling limit of the DyDW. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Efficient automatic protein classification is of central importance in genomic annotation. As an independent way to check the reliability of the classification, we propose a statistical approach to test if two sets of protein domain sequences coming from two families of the Pfam database are significantly different. We model protein sequences as realizations of Variable Length Markov Chains (VLMC) and we use the context trees as a signature of each protein family. Our approach is based on a Kolmogorov-Smirnov-type goodness-of-fit test proposed by Balding et at. [Limit theorems for sequences of random trees (2008), DOI: 10.1007/s11749-008-0092-z]. The test statistic is a supremum over the space of trees of a function of the two samples; its computation grows, in principle, exponentially fast with the maximal number of nodes of the potential trees. We show how to transform this problem into a max-flow over a related graph which can be solved using a Ford-Fulkerson algorithm in polynomial time on that number. We apply the test to 10 randomly chosen protein domain families from the seed of Pfam-A database (high quality, manually curated families). The test shows that the distributions of context trees coming from different families are significantly different. We emphasize that this is a novel mathematical approach to validate the automatic clustering of sequences in any context. We also study the performance of the test via simulations on Galton-Watson related processes.
Resumo:
We consider a Random Walk in Random Environment (RWRE) moving in an i.i.d. random field of obstacles. When the particle hits an obstacle, it disappears with a positive probability. We obtain quenched and annealed bounds on the tails of the survival time in the general d-dimensional case. We then consider a simplified one-dimensional model (where transition probabilities and obstacles are independent and the RWRE only moves to neighbour sites), and obtain finer results for the tail of the survival time. In addition, we study also the ""mixed"" probability measures (quenched with respect to the obstacles and annealed with respect to the transition probabilities and vice-versa) and give results for tails of the survival time with respect to these probability measures. Further, we apply the same methods to obtain bounds for the tails of hitting times of Branching Random Walks in Random Environment (BRWRE).
Resumo:
We study the competition interface between two growing clusters in a growth model associated to last-passage percolation. When the initial unoccupied set is approximately a cone, we show that this interface has an asymptotic direction with probability 1. The behavior of this direction depends on the angle theta of the cone: for theta >= 180 degrees, the direction is deterministic, while for theta < 180 degrees, it is random, and its distribution can be given explicitly in certain cases. We also obtain partial results on the fluctuations of the interface around its asymptotic direction. The evolution of the competition interface in the growth model can be mapped onto the path of a second-class particle in the totally asymmetric simple exclusion process; from the existence of the limiting direction for the interface, we obtain a new and rather natural proof of the strong law of large numbers (with perhaps a random limit) for the position of the second-class particle at large times.
Resumo:
In the Hammersley-Aldous-Diaconis process, infinitely many particles sit in R and at most one particle is allowed at each position. A particle at x, whose nearest neighbor to the right is at y, jumps at rate y - x to a position uniformly distributed in the interval (x, y). The basic coupling between trajectories with different initial configuration induces a process with different classes of particles. We show that the invariant measures for the two-class process can be obtained as follows. First, a stationary M/M/1 queue is constructed as a function of two homogeneous Poisson processes, the arrivals with rate, and the (attempted) services with rate rho > lambda Then put first class particles at the instants of departures (effective services) and second class particles at the instants of unused services. The procedure is generalized for the n-class case by using n - 1 queues in tandem with n - 1 priority types of customers. A multi-line process is introduced; it consists of a coupling (different from Liggett's basic coupling), having as invariant measure the product of Poisson processes. The definition of the multi-line process involves the dual points of the space-time Poisson process used in the graphical construction of the reversed process. The coupled process is a transformation of the multi-line process and its invariant measure is the transformation described above of the product measure.
Resumo:
We consider a polling model with multiple stations, each with Poisson arrivals and a queue of infinite capacity. The service regime is exhaustive and there is Jacksonian feedback of served customers. What is new here is that when the server comes to a station it chooses the service rate and the feedback parameters at random; these remain valid during the whole stay of the server at that station. We give criteria for recurrence, transience and existence of the sth moment of the return time to the empty state for this model. This paper generalizes the model, when only two stations accept arriving jobs, which was considered in [Ann. Appl. Probab. 17 (2007) 1447-1473]. Our results are stated in terms of Lyapunov exponents for random matrices. From the recurrence criteria it can be seen that the polling model with parameter regeneration can exhibit the unusual phenomenon of null recurrence over a thick region of parameter space.
Resumo:
We consider binary infinite order stochastic chains perturbed by a random noise. This means that at each time step, the value assumed by the chain can be randomly and independently flipped with a small fixed probability. We show that the transition probabilities of the perturbed chain are uniformly close to the corresponding transition probabilities of the original chain. As a consequence, in the case of stochastic chains with unbounded but otherwise finite variable length memory, we show that it is possible to recover the context tree of the original chain, using a suitable version of the algorithm Context, provided that the noise is small enough.
Resumo:
In this paper an alternative approach to the one in Henze (1986) is proposed for deriving the odd moments of the skew-normal distribution considered in Azzalini (1985). The approach is based on a Pascal type triangle, which seems to greatly simplify moments computation. Moreover, it is shown that the likelihood equation for estimating the asymmetry parameter in such model is generated as orthogonal functions to the sample vector. As a consequence, conditions for a unique solution of the likelihood equation are established, which seem to hold in more general setting.
Resumo:
We prove that for any a-mixing stationary process the hitting time of any n-string A(n) converges, when suitably normalized, to an exponential law. We identify the normalization constant lambda(A(n)). A similar statement holds also for the return time. To establish this result we prove two other results of independent interest. First, we show a relation between the rescaled hitting time and the rescaled return time, generalizing a theorem of Haydn, Lacroix and Vaienti. Second, we show that for positive entropy systems, the probability of observing any n-string in n consecutive observations goes to zero as n goes to infinity. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Background: Worldwide, a high proportion of HIV-infected individuals enter into HIV care late. Here, our objective was to estimate the impact that late entry into HIV care has had on AIDS mortality rates in Brazil. Methodology/Principal Findings: We analyzed data from information systems regarding HIV-infected adults who sought treatment at public health care facilities in Brazil from 2003 to 2006. We initially estimated the prevalence of late entry into HIV care, as well as the probability of death in the first 12 months, the percentage of the risk of death attributable to late entry, and the number of avoidable deaths. We subsequently adjusted the annual AIDS mortality rate by excluding such deaths. Of the 115,369 patients evaluated, 50,358 (43.6%) had entered HIV care late, and 18,002 died in the first 12 months, representing a 16.5% probability of death in the first 12 months (95% CI: 16.3-16.7). By comparing patients who entered HIV care late with those who gained timely access, we found that the risk ratio for death was 49.5 (95% CI: 45.1-54.2). The percentage of the risk of death attributable to late entry was 95.5%, translating to 17,189 potentially avoidable deaths. Averting those deaths would have lowered the 2003-2006 AIDS mortality rate by 39.5%. Including asymptomatic patients with CD4(+) T cell counts >200 and <= 350 cells/mm(3) in the group who entered HIV care late increased this proportion by 1.8%. Conclusions/Significance: In Brazil, antiretroviral drugs reduced AIDS mortality by 43%. Timely entry would reduce that rate by a similar proportion, as well as resulting in a 45.2% increase in the effectiveness of the program for HIV care. The World Health Organization recommendation that asymptomatic patients with CD4(+) T cell counts <= 350 cells/mm(3) be treated would not have a significant impact on this scenario.
Resumo:
Background -: Beta-2 adrenergic receptor gene polymorphisms Gln27Glu, Arg16Gly and Thr164Ile were suggested to have an effect in heart failure. We evaluated these polymorphisms relative to clinical characteristics and prognosis of alarge cohort of patients with heart failure of different etiologies. Methods -: We studied 501 patients with heart failure of different etiologies. Mean age was 58 years (standard deviation 14.4 years), 298 (60%) were men. Polymorphisms were identified by polymerase chain reaction-restriction fragment length polymorphism. Results -: During the mean follow-up of 12.6 months (standard deviation 10.3 months), 188 (38%) patients died. Distribution of genotypes of polymorphism Arg16Gly was different relative to body mass index (chi(2) = 9.797; p = 0.04). Overall the probability of survival was not significantly predicted by genotypes of Gln27Glu, Arg16Gly, or Thr164Ile. Allele and haplotype analysis also did not disclose any significant difference regarding mortality. Exploratory analysis through classification trees pointed towards a potential association between the Gln27Glu polymorphism and mortality in older individuals. Conclusion -: In this study sample, we were not able to demonstrate an overall influence of polymorphisms Gln27Glu and Arg16Gly of beta-2 receptor gene on prognosis. Nevertheless, Gln27Glu polymorphism may have a potential predictive value in older individuals.